In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations...This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations and can lead to varied or similar results in terms of precision and performance under certain assumptions. The article underlines the importance of comparing these two approaches to choose the one best suited to the context, available data and modeling objectives.展开更多
This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations in...This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples.展开更多
An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coin...An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-bran...The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location.展开更多
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode...Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.展开更多
The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses...The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering.展开更多
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the...Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.展开更多
Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used parti...Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass.展开更多
A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed ...A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.展开更多
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper...Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.展开更多
This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-eliminat...This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.展开更多
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co...Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.展开更多
To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross ...To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy.展开更多
The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features becau...The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.展开更多
The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of t...The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of the same type: In a breakdown situation the Galerkin method is unable to calculate an approximate solution, while the least-squares method, although does not really break down, is unsucessful in reducing the norm of its residual. In this paper we first establish a unified theorem which gives a relationship between breakdowns in the two methods. We further illustrate theoretically and experimentally that if the coefficient matrix of a lienar system is of high defectiveness with the associated eigenvalues less than 1, then the restarted Galerkin and least-squares methods will be in great risks of complete breakdowns. It appears that our findings may help to understand phenomena observed practically and to derive treatments for breakdowns of this type.展开更多
The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least sq...The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of its solution are derived. Through this method, the combination among the mixed finite element spaces does not demand the discrete Babuska-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.展开更多
A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to th...A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).展开更多
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
文摘This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations and can lead to varied or similar results in terms of precision and performance under certain assumptions. The article underlines the importance of comparing these two approaches to choose the one best suited to the context, available data and modeling objectives.
基金Supported by the NSF of Hubei Province(2022CFD042)。
文摘This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples.
文摘An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
基金This work was funded by the project of State Grid Hunan Electric Power Research Institute(No.SGHNDK00PWJS2210033).
文摘The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location.
文摘Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.
文摘The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering.
基金Supported by National Natural Science Foundation of China(Grant No.51607180)
文摘Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
基金supported by the 948 Program of the State Forestry Administration (2009-4-43)the National Natura Science Foundation of China (No.30870420)
文摘Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass.
基金Project supported by the National Natural Science Foundation of China(No.10172052).
文摘A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.
基金Foundation of Key Laboratory of Coast Civil Structure Safety (Tianjin University),Ministry of EducationChinese Program for New Century Excellent Talents in University+1 种基金Seed Foundation of Tianjin UniversitySeed Foundation of Xinjiang University
文摘Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.
基金Supported by "863" Program of P. R. China(2002AA2Z4291)
文摘Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.
基金Educational Research Project of Social Science for Young and Middle Aged Teachers in Fujian Province,China(No.JAS19371)Social Science Research Project of Education Department of Fujian Province,China(No.JAS160571)Key Project of Education and Teaching Reform of Undergraduate Universities in Fujian Province,China(No.FBJG20190130)。
文摘To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy.
基金This project is supported by Research Foundation for Doctoral Program of Higher Education, China (No.98033532)
文摘The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.
文摘The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of the same type: In a breakdown situation the Galerkin method is unable to calculate an approximate solution, while the least-squares method, although does not really break down, is unsucessful in reducing the norm of its residual. In this paper we first establish a unified theorem which gives a relationship between breakdowns in the two methods. We further illustrate theoretically and experimentally that if the coefficient matrix of a lienar system is of high defectiveness with the associated eigenvalues less than 1, then the restarted Galerkin and least-squares methods will be in great risks of complete breakdowns. It appears that our findings may help to understand phenomena observed practically and to derive treatments for breakdowns of this type.
基金Project supported by the National Natural Science Foundation of China (Nos.10471100 and 40437017)the Science and Technology Foundation of Beijing Jiaotong University
文摘The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of its solution are derived. Through this method, the combination among the mixed finite element spaces does not demand the discrete Babuska-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.
文摘A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).