Let be a fuzzy stochastic process and be a real valued finite variation process. We define the Lebesgue-Stieltjes integral denoted by for each by using the selection method, which is direct, nature and different from ...Let be a fuzzy stochastic process and be a real valued finite variation process. We define the Lebesgue-Stieltjes integral denoted by for each by using the selection method, which is direct, nature and different from the indirect definition appearing in some references. We shall show that this kind of integral is also measurable, continuous in time t and bounded a.s. under the Hausdorff metric.展开更多
文摘Let be a fuzzy stochastic process and be a real valued finite variation process. We define the Lebesgue-Stieltjes integral denoted by for each by using the selection method, which is direct, nature and different from the indirect definition appearing in some references. We shall show that this kind of integral is also measurable, continuous in time t and bounded a.s. under the Hausdorff metric.