期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Construction of LiCl/LiF/LiZn hybrid SEI interface achieving high-performance sulfide-based all-solid-state lithium metal batteries
1
作者 Chaochao Wei Yujie Xiao +8 位作者 Zhongkai Wu Chen Liu Qiyue Luo Ziling Jiang Lin Li Liang Ming Jie Yang Shijie Cheng Chuang Yu 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第6期1990-2001,共12页
Sulfide-based all-solid-state lithium metal batteries(ASSLMBs)have received extensive attention due to their high energy density and high safety,while the poor interface stability between sulfide electrolyte and lithi... Sulfide-based all-solid-state lithium metal batteries(ASSLMBs)have received extensive attention due to their high energy density and high safety,while the poor interface stability between sulfide electrolyte and lithium metal anode limits their development.Hence,a hybrid SEI(LICl/Li F/Li Zn)was constructed at the interface between Li_(5.5)PS_(4.5)Cl_(1.5)sulfide electrolyte and lithium metal.The Li Cl and Li F interface phases with high interface energy effectively induce the uniform deposition of Li^(+)and reduce the overpotential of Li^(+)deposition,while the Li Zn alloy interface phase accelerates the diffusion of lithium ions.The synergistic effect of the above functional interface phases inhibits the growth of lithium dendrites and stabilizes the interface between the sulfide electrolyte and lithium metal.The hybrid SEI strategy exhibits excellent electrochemical performance on symmetric batteries and all-solid-state batteries.The symmetrical cell exhibits stable cycling performance over long duration over 500 h at 1.0 mA cm^(-2).Moreover,the LiNbO_(3)@NCM712/Li_(5.5)PS_(4.5)Cl_(1.5)/Li-10%Zn F_(2)battery exhibits excellent cycle stability at a high rate of 0.5 C,with a capacity retention rate of 76.4%after 350 cycles. 展开更多
关键词 argyrodite electrolytes ASSLMBs electrochemical stability li-znf_2 anode electrochemical performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部