All-solid-state Li batteries(ASSLBs) with solid-state electrolytes(SSEs) are exciting candidates for nextgeneration energy storage and receive considerable attention owing to their reliability. Halide SSEs are promisi...All-solid-state Li batteries(ASSLBs) with solid-state electrolytes(SSEs) are exciting candidates for nextgeneration energy storage and receive considerable attention owing to their reliability. Halide SSEs are promising candidates due to their excellent stability against 4 V-class layered cathodes. Compared with Li3InCl6or Li_(3)ScCl_(6), the low ionic conductivity of Li_(2)ZrCl_(6)(LZC) is a challenge despite its low raw-material cost. Herein, we report a family of Li-Richened chloride, Li_(2+2x)Zr_(1–x)MxCl_(6), which can be used in highperformance ASSLBs owing to its high ionic conductivity(up to 0.62 mS cm^(-1)). The theoretical(ab initio molecular dynamics simulations) and experimental results prove that the strategy of aliovalent substitution with divalent metals to obtain Li-Richened LZC is effective in improving Li^(+)conductivity in SSEs. By combining Li_(2.1)Zr_(0.95)Mg_(0.05)Cl_(6)(Mg5-LZC) with a Li–In anode and a LiCoO_(2)cathode, a room-temperature ASSLBs with excellent long-term cycling stability(88% capacity retention at 0.3C for 100 cycles) and highrate capability(121 m A h g^(-1)at 1C) is reported. This exploratory work sheds light on improving the Li^(+)conductivity of low-cost LZC-family SSEs for constructing high performance ASSLBs.展开更多
采用碳酸盐共沉淀法和高温烧结工艺将一定量的Mo^(6+)掺杂到Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料中。利用XRD、SEM、EDS和恒流测试仪研究Mo^(6+)掺杂对Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料的晶体结构、...采用碳酸盐共沉淀法和高温烧结工艺将一定量的Mo^(6+)掺杂到Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料中。利用XRD、SEM、EDS和恒流测试仪研究Mo^(6+)掺杂对Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料的晶体结构、微观形貌和电化学性能的影响。结果显示,Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)表现出更低的阳离子混排和优异的电化学性能。经过Mo^(6+)掺杂后的正极,由于Li^(+)高速的迁移速率,使得首次不可逆容量损失降低,并展现出更好的高倍率性能和优异的循环稳定性。在0.5C倍率下循环100周后,Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)的容量保持率达到92.2%,远远大于Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)的87.5%。另外,当放电倍率增大到5C时,Li_(1.2)0Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)的放电比容量要比Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)低21.0 m A·h/g。因此,采用Mo^(6+)掺杂改性Li_(1.2)0Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料,可以有效提高锂电池的循环保持率和高倍率放电性能。展开更多
Li Mn_(2)O_(4)(LMO)is the substance of choice for small and medium-sized energy storage materials in daily life.In this work,Li3InCl6(LIC)is prepared on the surface of LiMn_(2)O_(4)by hydrothermal method using InCl_(3...Li Mn_(2)O_(4)(LMO)is the substance of choice for small and medium-sized energy storage materials in daily life.In this work,Li3InCl6(LIC)is prepared on the surface of LiMn_(2)O_(4)by hydrothermal method using InCl_(3)and LiCl as raw materials.This method stabilizes the LMO crystal structure by uniformly coating the LIC on the LMO surface and effectively maintains the morphology of LMO crystals during the cycling process.SEM and EDS analysis confirm the morphology and homogeneity of the synthesized material LIC on the LMO surface.The prepared material is put into a battery,and the charge-discharge test is carried out at 0.5 C and 1 C.The results show that the LIC surface-modified samples exhibit more than 6%higher cycling performance than the unmodified samples after long cycling.展开更多
Solid-state batteries with high energy density and safety are promising next-generation battery systems.However,lithium oxide and lithium sulfide electrolytes suffer low ionic conductivity and poor electrochemical sta...Solid-state batteries with high energy density and safety are promising next-generation battery systems.However,lithium oxide and lithium sulfide electrolytes suffer low ionic conductivity and poor electrochemical stability,respectively.Lithium halide solid electrolyte shows high conductivity and good compatibility with the pristine high-voltage cathode but limited applications due to the high price of rare metal.Zr-based lithium halides with low cost and high stability possess great potential.Herein,a small amount of In^(3+)is introduced in Li_(2)ZrCl_(6) to synthesize Li_(2.25)Zr_(0.75)In_(0.25)Cl_(6) electrolytes with a high room temperature Li-ion conductivity of 1.08 mS/cm.Solid-state batteries using Li_(2.25)Zr_(0.75)In_(0.25)Cl_(6)/Li_(5.5)PS_(4.5)Cl_(1.5) bilayer solid electrolytes combined with Li-In anode and pristine LiNi_(0.7)Mn_(0.2)Co_(0.1)O_(2) cathode deliver high initial discharge capacities under different cut-off voltages.This work provides an effective strategy for enhancing the conductivity of Li2ZrCl6 electrolytes,promoting their applications in solid-state batteries.展开更多
Lithium metal batteries are emerging as a strong candidate in the future energy storage market due to its extremely high energy density.However,the uncontrollable lithium dendrites and volume change of lithium metal a...Lithium metal batteries are emerging as a strong candidate in the future energy storage market due to its extremely high energy density.However,the uncontrollable lithium dendrites and volume change of lithium metal anodes severely hinder its application.In this work,the porous Cu skeleton modified with Cu_(6)Sn_(5)layer is prepared via dealloying brass foil following a facile electroless process.The porous Cu skeleton with large specific surface area and high electronic conductivity effectively reduces the local current density.The Cu_(6)Sn_(5)can react with lithium during the discharge process to form lithiophilic Li_(7)Sn_(2)in situ to promote Li-ions transport and reduce the nucleation energy barrier of lithium to guide the uniform lithium deposition.Therefore,more than 300 cycles at 1 mA cm^(−2)are achieved in the half-cell with an average Coulombic efficiency of 97.5%.The symmetric cell shows a superior cycle life of more than 1000 h at 1 mA cm^(−2)with a small average hysteresis voltage of 16 mV.When coupled with LiFePO_(4)cathode,the full cell also maintains excellent cycling and rate performance.展开更多
In this work,we construct Na_(2)Li_(2)Ti_(6)O_(14)@LiAlO_(2)(NLTO-L)composites by a simple ball milled process and post-calcination in air atmosphere to improve the electrochemical performance.The thickness of the LiA...In this work,we construct Na_(2)Li_(2)Ti_(6)O_(14)@LiAlO_(2)(NLTO-L)composites by a simple ball milled process and post-calcination in air atmosphere to improve the electrochemical performance.The thickness of the LiAlO_(2)coating layer is approximate2 nm.The morphology and particle size of Na_(2)Li_(2)Ti_(6)O_(14)are not dramatically altered after LiAlO_(2)coating.All samples display similar particles with a size range from 150 to 500 nm.The LiAlO_(2)coating can supply fast charge transmission paths with good insertion/extraction dynamics of lithium ions and provide an excellent rate performance and cycle performance of as-prepared Na_(2)Li_(2)Ti_(6)O_(14)@LiAlO_(2)anodes.Therefore,LiAlO_(2)coating efficiently enhances the rate performance and cycle performance of Na_(2)Li_(2)Ti_(6)O_(14)anode,even at large current densities.As a result,Na_(2)Li_(2)Ti_(6)O_(14)@LiAlO_(2)(5 wt%)reveals remarkable rate properties with reversible charge capacity of 238.7,214.7,185.8,168.5 and 139.8 mAh g^(-1)at 50,100,200,300 and 500 mA g^(-1),respectively.Na_(2)Li_(2)Ti_(6)O_(14)@LiAlO_(2)(5 wt%)also possesses a good cycle performance with a de-lithiation capacity of 166.5 mAh g-1 at 500 mA g^(-1)after 200 cycles.Nonetheless,the corresponding de-lithiation capacity of pure Na_(2)Li_(2)Ti_(6)O_(14)is only 140.1 mAh g^(-1).Consequently,LiAlO_(2)coating is efficeient approach to enhance the electrochemical performances of Na_(2)Li_(2)Ti_(6)O_(14).展开更多
Na_(2)Li_(2)Ti_(6)O_(14) as a reliable anode material is becoming a hopeful candidate for Li-ion battery.Nevertheless,the pristine Na_(2)Li_(2)Ti_(6)O_(14) usually suffer from bad rate performance and poor cycling sta...Na_(2)Li_(2)Ti_(6)O_(14) as a reliable anode material is becoming a hopeful candidate for Li-ion battery.Nevertheless,the pristine Na_(2)Li_(2)Ti_(6)O_(14) usually suffer from bad rate performance and poor cycling stability under high current due to limited diffusion kinetics and poor electrical conductivity.Here,the PPy-coated Na_(2)Li_(2)Ti_(6)O_(14) composites are successfully obtained via the solid-state method and followed by chemical oxidation process in the first time.The results of tests prove that the Na_(2)Li_(2)Ti_(6)O_(14)@PPy composites have better electrochemical performance than the bare Na_(2)Li_(2)Ti_(6)O_(14) because of the excellent electrical conductivity and the special macromolecular architecture of PPy.In particular,the Na_(2) Li_(2) Ti_(6) O_(14) @PPy(4 wt%)exhibits excellent charge capacities of about 223.2,218.0,200.8,184.3 and 172.6 mAh g^(-1) at 50,100,200,300 and500 mA g^(-1),respectively,revealing the best rate capability of all electrode materials.The Na_(2)Li_(2)Ti_(6)O_(14)@PPy(4 wt%)not only has the highest charge capacity under 0.5 mA g^(-1),but also has the highest capacity retention of 85.12%among all samples after 100 loops.Hence,the PPy coating is known as a promising way to improve the electrochemical property of Na_(2)Li_(2)Ti_(6)O_(14).The PPy-coated Na_(2)Li_(2)Ti_(6)O_(14) demonstrates the great prospect as promising negative materials for Li-ion batteries.展开更多
Li_(2)ZrCl_(6)(LZC) solid-state electrolytes(SSEs) have been recognized as a candidate halide SSEs for allsolid-state Li batteries(ASSLBs) with high energy density and safety due to its great compatibility with4V-clas...Li_(2)ZrCl_(6)(LZC) solid-state electrolytes(SSEs) have been recognized as a candidate halide SSEs for allsolid-state Li batteries(ASSLBs) with high energy density and safety due to its great compatibility with4V-class cathodes and low bill-of-material(BOM) cost.However,despite the benefits,the poor chemical/electrochemical stability of LZC against Li metal causes the deterioration of Li/LZC interface,which has a detrimental inhibition on Li^(+) transport in ASSLBs.Herein,we report a composite SSE combining by LZC and argyrodite buffer layer(Li_(6)PS_(5)Cl,LPSC) that prevent the unfavorable interaction between LZC and Li metal.The Li/LPSC-LZC-LPSC/Li symmetric cell stably cycles for over 1000 h at 0.3 mA/cm^(2)(0.15mAh/cm^(2)) and has a high critical current density(CCD) value of 2.1 mA/cm^(2)at 25 ℃,Under high temperature(60℃) which promotes the reaction between Li and LZC,symmetric cell fabricated with composite SSE also display stable cycling performance over 1200h at 0.3 mAh/cm^(2).Especially,the Li/NCM ASSLBs fabricated with composite SSE exhibit a high initial coulombic efficiency,as well as superior cycling and rate performance.This simple and efficient strategy will be instrumental in the development of halidebased high-performance ASSLBs.展开更多
基金the financial support from the Guangdong Natural Science Funds, China (2019A1515010675)the Science and Technology Project of Shenzhen, China (JCYJ20210324094206019)+5 种基金the financial support from the National Natural Science Foundation of China (52102284)the Department of Science and Technology of Guangxi Province, China (AB21220027, AD19110077)the Guangxi innovation research team project, China (Grant No.2018GXNSFGA281001)the Guangxi Natural Science Foundation, China (2018GXNSFAA138064, 2020GXNSFAA159037, and 2020GXNSFAA159059)the Guangxi Key Laboratory of Manufacturing Systems Foundation, China (20-065-40-005Z)the Engineering Research Center Foundation of Electronic Information Materials and Devices, China (EIMD-AA202005)。
文摘All-solid-state Li batteries(ASSLBs) with solid-state electrolytes(SSEs) are exciting candidates for nextgeneration energy storage and receive considerable attention owing to their reliability. Halide SSEs are promising candidates due to their excellent stability against 4 V-class layered cathodes. Compared with Li3InCl6or Li_(3)ScCl_(6), the low ionic conductivity of Li_(2)ZrCl_(6)(LZC) is a challenge despite its low raw-material cost. Herein, we report a family of Li-Richened chloride, Li_(2+2x)Zr_(1–x)MxCl_(6), which can be used in highperformance ASSLBs owing to its high ionic conductivity(up to 0.62 mS cm^(-1)). The theoretical(ab initio molecular dynamics simulations) and experimental results prove that the strategy of aliovalent substitution with divalent metals to obtain Li-Richened LZC is effective in improving Li^(+)conductivity in SSEs. By combining Li_(2.1)Zr_(0.95)Mg_(0.05)Cl_(6)(Mg5-LZC) with a Li–In anode and a LiCoO_(2)cathode, a room-temperature ASSLBs with excellent long-term cycling stability(88% capacity retention at 0.3C for 100 cycles) and highrate capability(121 m A h g^(-1)at 1C) is reported. This exploratory work sheds light on improving the Li^(+)conductivity of low-cost LZC-family SSEs for constructing high performance ASSLBs.
文摘采用碳酸盐共沉淀法和高温烧结工艺将一定量的Mo^(6+)掺杂到Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料中。利用XRD、SEM、EDS和恒流测试仪研究Mo^(6+)掺杂对Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料的晶体结构、微观形貌和电化学性能的影响。结果显示,Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)表现出更低的阳离子混排和优异的电化学性能。经过Mo^(6+)掺杂后的正极,由于Li^(+)高速的迁移速率,使得首次不可逆容量损失降低,并展现出更好的高倍率性能和优异的循环稳定性。在0.5C倍率下循环100周后,Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)的容量保持率达到92.2%,远远大于Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)的87.5%。另外,当放电倍率增大到5C时,Li_(1.2)0Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)的放电比容量要比Li_(1.20)Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)O_(2)低21.0 m A·h/g。因此,采用Mo^(6+)掺杂改性Li_(1.2)0Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)正极材料,可以有效提高锂电池的循环保持率和高倍率放电性能。
基金supported by Guangxi Higher Education Key Laboratory of Advanced MaterialsCenter of Ecological Collaborative Innovation for Aluminum Industry in Guangxi+4 种基金CITIC Dameng Mining Industries Limited-Guangxi University Joint Research Institute of Manganese Resources Utilization and Advanced Materials TechnologyGuangxi University-CITIC Dameng Mining Industries Limited Joint Base of Postgraduate CultivationNational Natural Science Foundation of China(No.11364003)Guangxi Innovation Driven Development Project(Nos.AA17204100,AA18118052)the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA138186)。
文摘Li Mn_(2)O_(4)(LMO)is the substance of choice for small and medium-sized energy storage materials in daily life.In this work,Li3InCl6(LIC)is prepared on the surface of LiMn_(2)O_(4)by hydrothermal method using InCl_(3)and LiCl as raw materials.This method stabilizes the LMO crystal structure by uniformly coating the LIC on the LMO surface and effectively maintains the morphology of LMO crystals during the cycling process.SEM and EDS analysis confirm the morphology and homogeneity of the synthesized material LIC on the LMO surface.The prepared material is put into a battery,and the charge-discharge test is carried out at 0.5 C and 1 C.The results show that the LIC surface-modified samples exhibit more than 6%higher cycling performance than the unmodified samples after long cycling.
基金supported by the National Natural Science Foundation of China(Nos.52177214,51821005)the Department of Science and Technology of Guangdong Province(No.2017ZT07Z479)the Pico Centerat SUSTech CRF that receives support from Presidential fund and Development and Reform Commission of Shenzhen Municipality.
文摘Solid-state batteries with high energy density and safety are promising next-generation battery systems.However,lithium oxide and lithium sulfide electrolytes suffer low ionic conductivity and poor electrochemical stability,respectively.Lithium halide solid electrolyte shows high conductivity and good compatibility with the pristine high-voltage cathode but limited applications due to the high price of rare metal.Zr-based lithium halides with low cost and high stability possess great potential.Herein,a small amount of In^(3+)is introduced in Li_(2)ZrCl_(6) to synthesize Li_(2.25)Zr_(0.75)In_(0.25)Cl_(6) electrolytes with a high room temperature Li-ion conductivity of 1.08 mS/cm.Solid-state batteries using Li_(2.25)Zr_(0.75)In_(0.25)Cl_(6)/Li_(5.5)PS_(4.5)Cl_(1.5) bilayer solid electrolytes combined with Li-In anode and pristine LiNi_(0.7)Mn_(0.2)Co_(0.1)O_(2) cathode deliver high initial discharge capacities under different cut-off voltages.This work provides an effective strategy for enhancing the conductivity of Li2ZrCl6 electrolytes,promoting their applications in solid-state batteries.
基金supported by the National Natural Science Foundation of China(52072173)the Jiangsu Province Outstanding Youth Fund(BK20200016)the International Cooperation of Jiangsu Province(SBZ2022000084)
文摘Lithium metal batteries are emerging as a strong candidate in the future energy storage market due to its extremely high energy density.However,the uncontrollable lithium dendrites and volume change of lithium metal anodes severely hinder its application.In this work,the porous Cu skeleton modified with Cu_(6)Sn_(5)layer is prepared via dealloying brass foil following a facile electroless process.The porous Cu skeleton with large specific surface area and high electronic conductivity effectively reduces the local current density.The Cu_(6)Sn_(5)can react with lithium during the discharge process to form lithiophilic Li_(7)Sn_(2)in situ to promote Li-ions transport and reduce the nucleation energy barrier of lithium to guide the uniform lithium deposition.Therefore,more than 300 cycles at 1 mA cm^(−2)are achieved in the half-cell with an average Coulombic efficiency of 97.5%.The symmetric cell shows a superior cycle life of more than 1000 h at 1 mA cm^(−2)with a small average hysteresis voltage of 16 mV.When coupled with LiFePO_(4)cathode,the full cell also maintains excellent cycling and rate performance.
基金financially supported by the National Natural Science Foundation of China(No.U1960107)the“333”Talent Project of Hebei Province(No.A202005018)the Fundamental Research Funds for the Central Universities(No N2123001)。
文摘In this work,we construct Na_(2)Li_(2)Ti_(6)O_(14)@LiAlO_(2)(NLTO-L)composites by a simple ball milled process and post-calcination in air atmosphere to improve the electrochemical performance.The thickness of the LiAlO_(2)coating layer is approximate2 nm.The morphology and particle size of Na_(2)Li_(2)Ti_(6)O_(14)are not dramatically altered after LiAlO_(2)coating.All samples display similar particles with a size range from 150 to 500 nm.The LiAlO_(2)coating can supply fast charge transmission paths with good insertion/extraction dynamics of lithium ions and provide an excellent rate performance and cycle performance of as-prepared Na_(2)Li_(2)Ti_(6)O_(14)@LiAlO_(2)anodes.Therefore,LiAlO_(2)coating efficiently enhances the rate performance and cycle performance of Na_(2)Li_(2)Ti_(6)O_(14)anode,even at large current densities.As a result,Na_(2)Li_(2)Ti_(6)O_(14)@LiAlO_(2)(5 wt%)reveals remarkable rate properties with reversible charge capacity of 238.7,214.7,185.8,168.5 and 139.8 mAh g^(-1)at 50,100,200,300 and 500 mA g^(-1),respectively.Na_(2)Li_(2)Ti_(6)O_(14)@LiAlO_(2)(5 wt%)also possesses a good cycle performance with a de-lithiation capacity of 166.5 mAh g-1 at 500 mA g^(-1)after 200 cycles.Nonetheless,the corresponding de-lithiation capacity of pure Na_(2)Li_(2)Ti_(6)O_(14)is only 140.1 mAh g^(-1).Consequently,LiAlO_(2)coating is efficeient approach to enhance the electrochemical performances of Na_(2)Li_(2)Ti_(6)O_(14).
基金financially supported by the National Natural Science Foundation of China(No.U1960107)the“333”Talent Project of Hebei Province(No.A202005018)the Fundamental Research Funds for the Central Universities(No.N2123001)。
文摘Na_(2)Li_(2)Ti_(6)O_(14) as a reliable anode material is becoming a hopeful candidate for Li-ion battery.Nevertheless,the pristine Na_(2)Li_(2)Ti_(6)O_(14) usually suffer from bad rate performance and poor cycling stability under high current due to limited diffusion kinetics and poor electrical conductivity.Here,the PPy-coated Na_(2)Li_(2)Ti_(6)O_(14) composites are successfully obtained via the solid-state method and followed by chemical oxidation process in the first time.The results of tests prove that the Na_(2)Li_(2)Ti_(6)O_(14)@PPy composites have better electrochemical performance than the bare Na_(2)Li_(2)Ti_(6)O_(14) because of the excellent electrical conductivity and the special macromolecular architecture of PPy.In particular,the Na_(2) Li_(2) Ti_(6) O_(14) @PPy(4 wt%)exhibits excellent charge capacities of about 223.2,218.0,200.8,184.3 and 172.6 mAh g^(-1) at 50,100,200,300 and500 mA g^(-1),respectively,revealing the best rate capability of all electrode materials.The Na_(2)Li_(2)Ti_(6)O_(14)@PPy(4 wt%)not only has the highest charge capacity under 0.5 mA g^(-1),but also has the highest capacity retention of 85.12%among all samples after 100 loops.Hence,the PPy coating is known as a promising way to improve the electrochemical property of Na_(2)Li_(2)Ti_(6)O_(14).The PPy-coated Na_(2)Li_(2)Ti_(6)O_(14) demonstrates the great prospect as promising negative materials for Li-ion batteries.
基金B.Tian acknowledges the financial support from the Science and Technology Project of Shenzhen(No.JCYJ20210324094206019)X.Huang acknowledges the financial support from the National Natural Science Foundation of China(No.52102284)+2 种基金Z.Yu acknowledges Department of Science and Technology of Guangxi Province(Nos.AB21220027,AD19110077)Guangxi Key Laboratory of Manufacturing Systems Foundation(No.20-065-40-005Z)Engineering Research Center Foundation of Electronic Information Materials and Devices(No.EIMD-AA202005).
文摘Li_(2)ZrCl_(6)(LZC) solid-state electrolytes(SSEs) have been recognized as a candidate halide SSEs for allsolid-state Li batteries(ASSLBs) with high energy density and safety due to its great compatibility with4V-class cathodes and low bill-of-material(BOM) cost.However,despite the benefits,the poor chemical/electrochemical stability of LZC against Li metal causes the deterioration of Li/LZC interface,which has a detrimental inhibition on Li^(+) transport in ASSLBs.Herein,we report a composite SSE combining by LZC and argyrodite buffer layer(Li_(6)PS_(5)Cl,LPSC) that prevent the unfavorable interaction between LZC and Li metal.The Li/LPSC-LZC-LPSC/Li symmetric cell stably cycles for over 1000 h at 0.3 mA/cm^(2)(0.15mAh/cm^(2)) and has a high critical current density(CCD) value of 2.1 mA/cm^(2)at 25 ℃,Under high temperature(60℃) which promotes the reaction between Li and LZC,symmetric cell fabricated with composite SSE also display stable cycling performance over 1200h at 0.3 mAh/cm^(2).Especially,the Li/NCM ASSLBs fabricated with composite SSE exhibit a high initial coulombic efficiency,as well as superior cycling and rate performance.This simple and efficient strategy will be instrumental in the development of halidebased high-performance ASSLBs.