期刊文献+
共找到5,827篇文章
< 1 2 250 >
每页显示 20 50 100
Tandem hydroalkylation and deoxygenation of lignin-derived phenolics to synthesize high-density fuels
1
作者 Rui Yu Zhensheng Shen +6 位作者 Yanan Liu Chengxiang Shi Juncong Qu Lun Pan Zhenfeng Huang Xiangwen Zhan g Ji-Jun Zou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期104-109,共6页
Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels usin... Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil. 展开更多
关键词 High-density fuel BIOFUEL Hydrogenation ALKYLATION lignin Phenolics
下载PDF
Green synthesis of ZSM-5 using silica fume and catalytic co-cracking of lignin and plastics for production of monocyclic aromatics
2
作者 Hongbing Fu Yufei Gu +7 位作者 Tianhua Gao Fuwei Li Hengshuo Gu Hucheng Ge Yuke Liu Zhixia Li Hongfei Lin Jiangfei Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期92-105,共14页
ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles w... ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect. 展开更多
关键词 Silica fume ZSM-5 Catalytic co-cracking PLASTICS lignin
下载PDF
Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat
3
作者 Weibing Yang Shengquan Zhang +7 位作者 Qiling Hou Jiangang Gao Hanxia Wang Xianchao Chen Xiangzheng Liao Fengting Zhang Changping Zhao Zhilie Qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1105-1117,共13页
The use of hybrid wheat is one way to improve the yield in the future.However,greater plant heights increase lodging risk to some extent.In this study,two hybrid combinations with differences in lodging resistance wer... The use of hybrid wheat is one way to improve the yield in the future.However,greater plant heights increase lodging risk to some extent.In this study,two hybrid combinations with differences in lodging resistance were used to analyze the stem-related traits during the filling stage,and to investigate the mechanism of the difference in lodging resistance by analyzing lignin synthesis of the basal second internode(BSI).The stem-related traits such as the breaking strength,stem pole substantial degree(SPSD),and rind penetration strength(RPS),as well as the lignin content of the lodging-resistant combination(LRC),were significantly higher than those of the lodgingsensitive combination(LSC).The phenylpropanoid biosynthesis pathway was significantly and simultaneously enriched according to the transcriptomics and metabolomics analysis at the later filling stage.A total of 35 critical regulatory genes involved in the phenylpropanoid pathway were identified.Moreover,42%of the identified genes were significantly and differentially expressed at the later grain-filling stage between the two combinations,among which more than 80%were strongly up-regulated at that stage in the LRC compared with LSC.On the contrary,the LRC displayed lower contents of lignin intermediate metabolites than the LSC.These results suggested that the key to the lodging resistance formation of LRC is largely the higher lignin synthesis at the later grain-filling stage.Finally,breeding strategies for synergistically improving plant height and lodging resistance of hybrid wheat were put forward by comparing the LRC with the conventional wheat applied in large areas. 展开更多
关键词 gene expression lignin synthesis lodging-resistance hybrid wheat
下载PDF
Role of methoxy and C_(α)-based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds
4
作者 Yang Zhou Qiang Zeng +3 位作者 Hongyan He Kejia Wu Fuqiao Liu Xuehui Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期114-125,共12页
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro... In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations. 展开更多
关键词 lignin model compounds β-O-4 dimers Electrochemical oxidation Oxidation mechanisms Substituent effect
下载PDF
Color and Gloss Changes of a Lignin-Based Polyurethane Coating under Accelerated Weathering
5
作者 Fatemeh Hassani Khorshidi Saeed Kazemi Najafi +3 位作者 Farhood Najafi Antonio Pizzi Dick Sandberg Rabi Behrooz 《Journal of Renewable Materials》 EI CAS 2024年第2期305-323,共19页
The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered arti... The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered artificially.Subsequently,color and gloss of the coatings were measured before and after the weathering test.Field emission scanning electron microscopy(FE-SEM)micrographs prepared from the coatings showed that the average size of nano-particles in the polyurethane substrate was approximately 500 nm.Nuclear magnetic resonance(13C-NMR)spectroscopy showed that strong urethane bonds were formed in the nano-lignin-based polyurethane.Differential calorimetric analysis(DSC)test revealed that the glass-transition temperature(Tg)of lignin nanoparticles modified with diethylenetriamine(DETA)was 112.8℃ and Tg of lignin nano-particles modified with ethylenediamine(EDA)was 102.5℃,which is lower than the Tg of un-modified lignin(114.6℃)and lignin modified with DETA(126.8℃)and lignin modified with EDA(131.3℃).The coatings modified with lignin nano-particles had a greater change in gloss.The lignin nano-particles in the modified coating are trapping hydroxyl radicals which reduces photoactivity and yellowing of the polyurethane by about 3 times compared to unmodified polyurethane coatings.After weathering test,the nano-lignin-based coating had a rougher surface with a lower contact angle(0.78°)compared to the unmodified polyurethane coating(0.85°). 展开更多
关键词 AMINATION propylene carbonate lignin BIOPOLYMER polyurethane coating POLYOL UN SDG 13
下载PDF
Lignin-based materials for electrochemical energy storage devices
6
作者 Huan Wang Fangbao Fu +6 位作者 Ming Huang Yunhui Feng Dongxue Han Yuebin Xi Wenlong Xiong Dongjie Yang Li Niu 《Nano Materials Science》 EI CAS CSCD 2023年第2期141-160,共20页
Lignin is the most abundant aromatic polymer in nature,which is rich in a large number of benzene ring structures and active functional groups.The molecular structure of lignin has unique designability and controllabi... Lignin is the most abundant aromatic polymer in nature,which is rich in a large number of benzene ring structures and active functional groups.The molecular structure of lignin has unique designability and controllability,and is a class of functional materials with great application prospects in energy storage and conversion.Here,this review firstly focuses on the concept,classification,and physicochemical property of lignin.Then,the application research of lignin in the field of electrochemical storage materials and devices are summarized,such as lignin-carbon materials and lignin-carbon composites in supercapacitors and secondary batteries.Finally,this review points out the bottlenecks that need to be solved urgently and the prospects for future research priorities. 展开更多
关键词 lignin Electrochemical storage lignin-based carbon SUPERCAPACITORS Secondary batteries
下载PDF
Waste to wealth: Oxygen-nitrogen-sulfur codoped lignin-derived carbon microspheres from hazardous black liquors for high-performance DSSCs 被引量:1
7
作者 Wenjie Cheng Caichao Wan +6 位作者 Xingong Li Huayun Chai Zhenxu Yang Song Wei Jiahui Su Xueer Tang Yiqiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期549-563,I0013,共16页
Carbon materials are effective substitutes for Pt counter electrodes(CEs) in dye-sensitized solar cells(DSSCs). However, many of these materials, such as carbon nanotubes and graphene, are expensive and require comple... Carbon materials are effective substitutes for Pt counter electrodes(CEs) in dye-sensitized solar cells(DSSCs). However, many of these materials, such as carbon nanotubes and graphene, are expensive and require complex preparation process. Herein, waste lignin, recycled from hazardous black liquors,is used to create oxygen-nitrogen-sulfur codoped carbon microspheres for use in DSSC CEs through the facile process of low-temperature preoxidation and high-temperature self-activation. The large number of ester bonds formed by preoxidation increase the degree of cross-linking of the lignin chains, leading to the formation of highly disordered carbon with ample defect sites during pyrolysis. The presence of organic O/N/S components in the waste lignin results in high O/N/S doping of the pyrolysed carbon,which increases the electrolyte ion adsorption and accelerates the electron transfer at the CE/electrolyte interface, as confirmed by density functional theory(DFT) calculations. The presence of inorganic impurities enables the construction of a hierarchical micropore-rich carbon structure through the etching effect during self-activation, which can provide abundant catalytically active sites for the reversible adsorption/desorption of electrolyte ions. Under these synergistic effects, the DSSCs that use this novel carbon CE achieve a quite high power-conversion efficiency of 9.22%. To the best of our knowledge, the value is a new record reported so far for biomass-carbon-based DSSCs. 展开更多
关键词 lignin Carbon microspheres CODOPING Hierarchical pores DSSCS
下载PDF
Conversion of lignin oil and hemicellulose derivative into high-density jet fuel 被引量:1
8
作者 Sichao Yang Chengxiang Shi +4 位作者 Zhensheng Shen Lun Pan Zhenfeng Huang Xiangwen Zhang Ji-Jun Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期452-460,I0012,共10页
Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel... Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock. 展开更多
关键词 High-density fuel BIOFUEL lignin oil ALKYLATION HYDRODEOXYGENATION
下载PDF
Co-Production of High-Grade Dissolving Pulp,Furfural,and Lignin from Eucalyptus via Extremely Low Acid Pretreatment and Pulping Technologies and Catalysis 被引量:1
9
作者 Chengxiang Li Yue Wu +3 位作者 Chunhui Zhang Yao Liu Qixuan Lin Junli Ren 《Journal of Renewable Materials》 SCIE EI 2023年第6期2555-2574,共20页
Hemicellulose and lignin are not reasonably utilized during the dissolved pulp preparation process.This work aimed to propose a process for the co-production of dissolving pulp,furfural,and lignin from eucalyptus.High... Hemicellulose and lignin are not reasonably utilized during the dissolved pulp preparation process.This work aimed to propose a process for the co-production of dissolving pulp,furfural,and lignin from eucalyptus.High-grade dissolving pulp was prepared from eucalyptus using a combination of extremely low acid(ELA)pretreatment,Kraft cooking,and elementary chlorine-free(ECF)bleaching.The obtained pre-hydrolysate was catalytic conversion into furfural in a biphasic system,and lignin during Kraft cooking and ECF was recovered.The process condition was discussed as well as the mass flow direction.The results showed that ELA pretreatment could effectively remove 80.1%hemicellulose.Compared with traditional hydrothermal pretreatment,the ELA pretreatment significantly increased the xylose yield from 5.05 to 14.18 g/L at 170℃ for 2 h,which had practical significance for furfural production.The 82.7%furfural yield and 82.9%furfural selectivity were obtained from xylose-rich pre-hydrolysate using NaCl as a phase modifier in a biphasic system with 4-methyl-2-pentanone(MIBK)as an organic phase by ion exchange resin catalysts at 190℃ for 2 h.Subsequently,the pretreated eucalyptus was subjected to Kraft cooking,and the optimal alkali amount was 14%.Then,the Kraft pulp was bleached using the O-D1-EP-D_(2) sequence,and dissolving pulp was obtained with an ISO brightness of 86.0%,viscosity of 463 mL/g,andα-cellulose content of 95.4%.The Kraft lignin which has a potential application was investigated by 2D-HSQC NMR and 31P NMR.The results showed that the S/G ratio of Kraft lignin was 1.93,and the content of phenolic hydroxyl groups was 2.53 mmol/g.Moreover,based on the above proposed process,30.5 g dissolving pulp,5.5 g furfural,and 21.2 g lignin per 100 g eucalyptus chips(oven dry)were produced.This research will provide new catalysis and pulping technical routes for dissolving pulp,furfural,and Kraft lignin products,which are in great demand in the chemical industry. 展开更多
关键词 EUCALYPTUS extremely low acid pretreatment dissolving pulp FURFURAL kraft lignin
下载PDF
Fabricating Cationic Lignin Hydrogels for Dye Adsorption 被引量:1
10
作者 Chao Wang Xuezhen Feng +2 位作者 Wanbing Li Shibin Shang Haibo Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第4期1793-1805,共13页
Due to the low content of adsorption-active groups in lignin,its application in the field of adsorption is limited.Herein,we first prepared cationic kraft lignin acrylate,from which a cationic lignin(CKLA)hydrogel was... Due to the low content of adsorption-active groups in lignin,its application in the field of adsorption is limited.Herein,we first prepared cationic kraft lignin acrylate,from which a cationic lignin(CKLA)hydrogel was further prepared by cationic kraft lignin acrylate,acrylamide,and N,N’-methylenebisacrylamide.The morphology,compression properties and swelling properties of CKLA hydrogels were investigated.The prepared CKLA hydrogel was applied as an adsorbent for Congo red.The effect of CKLA hydrogel dosages,initial concentration of Congo red,and pH on adsorption efficiency was investigated.The maximum Congo red removal efficiency was obtained at the initial concentration of Congo red of 50 mg/L,pH 7,and 5 mg dosage of CKLA hydrogel with 20%cationic lignin content.After five cycles of adsorption,the adsorption efficiency of the hydrogel for Congo red still reached more than 80%.The CKLA hydrogel showed pseudo-second-order adsorption kinetics for Congo red adsorption.These results demonstrate the potential of the CKLA hydrogel as an adsorbent for water treatment. 展开更多
关键词 ADSORPTION lignin congo red HYDROGEL
下载PDF
Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose
11
作者 DONG Xiu-chun QIAN Tai-feng +4 位作者 CHU Jin-peng ZHANG Xiu LIU Yun-jing DAI Xing-long HE Ming-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1351-1365,共15页
Delayed sowing mitigates lodging in wheat. However, the mechanism underlying the enhanced lodging resistance in wheat has yet to be fully elucidated. Field experiments were conducted to investigate the effects of sowi... Delayed sowing mitigates lodging in wheat. However, the mechanism underlying the enhanced lodging resistance in wheat has yet to be fully elucidated. Field experiments were conducted to investigate the effects of sowing date on lignin and cellulose metabolism, stem morphological characteristics, lodging resistance, and grain yield. Seeds of Tainong 18,a winter wheat variety, were sown on October 8(normal sowing) and October 22(late sowing) during both of the 2015–2016 and 2016–2017 growing seasons. The results showed that late sowing enhanced the lodging resistance of wheat by improving the biosynthesis and accumulation of lignin and cellulose. Under late sowing, the expression levels of key genes(Ta PAL, Ta CCR, Ta COMT, TaCAD, and TaCesA1, 3, 4, 7, and 8) and enzyme activities(TaPAL and TaCAD) related to lignin and cellulose biosynthesis peaked 4–12 days earlier, and except for the TaPAL, TaCCR, and TaCesA1 genes and TaPAL, in most cases they were significantly higher than under normal sowing. As a result, lignin and cellulose accumulated quickly during the stem elongation stage. The mean and maximum accumulation rates of lignin and cellulose increased, the maximum accumulation contents of lignin and cellulose were higher, and the cellulose accumulation duration was prolonged. Consequently, the lignin/cellulose ratio and lignin content were increased from 0 day and the cellulose content was increased from 11 days after jointing onward. Our main finding is that the improved biosynthesis and accumulation of lignin and cellulose were responsible for increasing the stem-filling degree, breaking strength, and lodging resistance. The major functional genes enhancing lodging resistance in wheat that are induced by delayed sowing need to be determined. 展开更多
关键词 CELLULOSE LATE SOWING lignin LODGING resistance wheat
下载PDF
Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton
12
作者 TIAN Xiao-min HAN Peng +9 位作者 WANG Jing SHAO Pan-xia AN Qiu-shuang Nurimanguli AINI YANG Qing-yong YOU Chun-yuan LIN Hai-rong ZHU Long-fu PAN Zhen-yuan NIE Xin-hui 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1324-1337,共14页
Lignin metabolism plays a pivotal role in plant defense against pathogens and is always positively correlated as a response to pathogen infection. Thus, understanding resistance genes against plant pathogens depends o... Lignin metabolism plays a pivotal role in plant defense against pathogens and is always positively correlated as a response to pathogen infection. Thus, understanding resistance genes against plant pathogens depends on a genetic analysis of the lignin response. This study used eight Upland cotton lines to construct a multi-parent advanced generation intercross(MAGIC) population(n=280), which exhibited peculiar characteristics from the convergence of various alleles coding for advantageous traits. In order to measure the lignin response to Verticillium wilt(LRVW), the artificial disease nursery(ADN) and rotation nursery(RN) were prepared for MAGIC population planting in four environments. The stem lignin contents were collected, and the LRVW was measured with the lignin value of ADN/RN in each environment, which showed significant variations. We employed 9 323 high-quality single-nucleotide polymorphism(SNP) markers obtained from the Cotton-SNP63K array for genotyping the MAGIC population. The SNPs were distributed through the whole genome with 4.78 SNP/Mb density, ranging from 1.14(ChrA06) to 10.08(ChrD08). In addition, a genome-wide association study was performed using a Mixed Linear Model(MLM) for LRVW. Three stable quantitative trait loci(QTLs), qLRVW-A04, qLRVW-A10, and qLRVW-D05, were identified in more than two environments. Two key candidate genes, Ghi_D05G01046 and Ghi_D05G01221, were selected within the QTLs through the combination of variations in the coding sequence, induced expression patterns, and function annotations. Both genes presented nonsynonymous mutations in coding regions and were strongly induced by Verticillium dahliae. Ghi_D05G01046 encodes a leucine-rich extensin(LRx) protein involved in Arabidopsis cell wall biosynthesis and organization. Ghi_D05G01221 encodes a transcriptional co-repressor novel interactor of novel interactor of jasmonic acid ZIM-domain(JAZ–NINJA), which functions in the jasmonic acid(JA) signaling pathway. In summary, the study creates valuable genetic resources for breeding and QTL mapping and opens up a new perspective to uncover the genetic basis of VW resistance in Upland cotton. 展开更多
关键词 genome-wide association study lignin RESPONSE MAGIC POPULATION Upland cotton VERTICILLIUM WILT
下载PDF
Radical and(photo)electron transfer induced mechanisms for lignin photo-and electro-catalytic depolymerization
13
作者 Kejia Wu Minglong Cao +1 位作者 Qiang Zeng Xuehui Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期383-405,共23页
As one of the three major components of woody biomass,lignin is a kind of natural organic polymer and the only abundant natural renewable resource with aromatic nucleus.Chemical catalysis induced depolymerization is a... As one of the three major components of woody biomass,lignin is a kind of natural organic polymer and the only abundant natural renewable resource with aromatic nucleus.Chemical catalysis induced depolymerization is an important and effective approach for lignin utilization.In particular,photocatalysis and electrocatalysis show great potential in accurately activating C-O/C-C bonds,which is a critical point of selective cleavage of lignin.In this contribution,we focus on radical and(photo)electron transfer induced reaction mechanisms of the photo(electro)catalytic depolymerization of lignin.Primarily,the general situation of Carbon-centered radicals and active oxygen species mediated lignin conversion has been discussed.Then the mechanisms for(photo)electron transfer mediated lignin depolymerization have been summarized.At the end of this review,the challenges and opportunities of photo(electro)catalysis in the applications of lignin valorization have been forecasted. 展开更多
关键词 lignin Photocatalysis ELECTROCATALYSIS DEPOLYMERIZATION Reaction mechanism
下载PDF
Effect of Amine Type on Lignin Modification to Evaluate Its Reactivity in Polyol Construction for Non-Isocyanate Polyurethanes(NIPU)
14
作者 Saeed Kazemi Najafi Farhood Najafi +2 位作者 Antonio Pizzi Fatemeh Hassani Khorshidi Rabi Behrooz 《Journal of Renewable Materials》 SCIE EI 2023年第5期2171-2190,共20页
Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Amon... Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Among biopolymers,lignin is regarded as the base of a new polymer in polyol construction.The present study aimed to investigate the effects of amine type(diethylenetriamine and ethylenediamine)on the modification of lignin-based polyols,so as to provide an alternative to petroleum polyols and,in turn,increase functional groups and reduce their harm to humans’health and the environment.To this aim,first,lignin was extracted from raw liquor.Next,the extracted lignin was reacted with diethylenetriamine(DETA)and ethylenediamine(EDA).Finally,the Mannich method was used for the reaction between amine lignin and propylene carbonate.The results of the Fourier Transform Infrared(FTIR)spectroscopy analysis showed that modification with DETA led to more structural change in lignin and peak 1100 indicates the presence of C–O bond related to urethane bonds in modified lignin.Moreover,adding propylene carbonate to aminated lignin did not result in much change in the results of the FTIR analysis.Additionally,urethane bonds can be seen in the results of GPC at 400℃–500℃.Furthermore,a slight decrease in thermal stability was observed in lignin modified with amine and propylene carbonate,compared to the raw lignin sample. 展开更多
关键词 POLYOL lignin DIETHYLENETRIAMINE ETHYLENEDIAMINE propylene carbonate polyurethanes NIPU
下载PDF
Cooperative catalysis of Co single atoms and nanoparticles enables selective CAr-OCH_(3) cleavage for sustainable production of lignin-based cyclohexanols
15
作者 Baoyu Wang Peng Zhou +3 位作者 Ximing Yan Hu Li Hongguo Wu Zehui Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期535-549,共15页
In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of ... In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of lignin-derived o-methoxyphenols(lignin oil)to cyclohexanols(up to 97%yield)via cascade demethoxylation and dearomatization.Theoretical calculations elaborated that the dual-size Co catalyst exhibited a cooperative effect in the selective demethoxylation process,in which the Co NPs could initially dissociate hydrogen at lower energies while Co1remarkably facilitated the cleavage of the C_(Ar)-OCH_(3)bond.Moreover,the intramolecular hydrogen bonds formed in the omethoxy-containing phenols were found to result in a decrease in the bond energy of the C_(Ar)-OCH_(3)bond,which was more prone to be activated by the dual-size Co sites.Notably,the pre-hydrogenated intermediate(e.g.,2-methoxycyclohexanol from guaiacol)is difficult to undergo demethoxylation,indicating that the selective C_(Ar)-OCH_(3)bond cleavage is a prerequisite for the synthesis of cyclohexanols.The 0.2Co_(1-NPs)@NC catalyst was highly recyclable with a neglect decline in activity during five consecutive cycles.This cooperative catalytic strategy based on the metal size effect opens new avenues for biomass upgrading via enhanced C-O bond cleavage of high selectivity. 展开更多
关键词 Biomass conversion Heterogeneous catalysis C-O bond cleavage lignin valorization CYCLOHEXANOLS
下载PDF
Electrochemical Biorefinery toward Chemicals Synthesis and Bio-Oil Upgrading from Lignin
16
作者 Rui Hu Yuying Zhao +5 位作者 Chen Tang Yan Shi Gang Luo Jiajun Fan James H.Clark Shicheng Zhang 《Engineering》 SCIE EI CAS CSCD 2023年第8期178-198,共21页
Recalcitrance and the inherent heterogeneity of lignin structure are the major bottlenecks to impede the popularization of lignin-based chemicals production processes.Recent works suggested a promising pathway for lig... Recalcitrance and the inherent heterogeneity of lignin structure are the major bottlenecks to impede the popularization of lignin-based chemicals production processes.Recent works suggested a promising pathway for lignin depolymerization and lignin-derived bio-oil upgrading via an electrochemical biorefinery(a process in which lignin valorization is performed via electrochemical oxidation or reduction).This review presents the progress on chemicals synthesis and bio-oil upgrading from lignin by an electrochemical biorefinery,relating to the lignin biosynthesis pathway,reaction pathway of lignin electrochemical conversion,inner-sphere and outer-sphere electron transfer mechanism,basic kinetics and thermodynamics in electrochemistry,and the recent embodiments analysis with the emphasis on the respective feature and limitation for lignin electrochemical oxidative and reductive conversion.Lastly,the challenge and perspective associated with lignin electrochemical biorefinery are discussed.Present-day results indicate that more work should be performed to promote efficiency,selectivity,and stability in pursuing a lignin electrochemical biorefinery.One of the most promising developing directions appears to be integrating various types of lignin electrochemical conversion strategies and other existing or evolving lignin valorization technologies.This review aims to provide more references and discussion on the development for lignin electrochemical biorefinery. 展开更多
关键词 lignin Electrochemical biorefinery Reaction pathway Electron transfer mechanism Kinetics THERMODYNAMICS
下载PDF
The case-dependent lignin role in lignocellulose nanofibers preparation and functional application-A review
17
作者 Xiya Zhang Lili Zhang +1 位作者 Yimin Fan Zhiguo Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1553-1566,共14页
Lignocellulose nanofibers(LCNFs) as a new material is attracting extensive attention. The pretreatment and mechanical fibrillation are the two main stages involved in the preparation of LCNFs, and lignin plays the imp... Lignocellulose nanofibers(LCNFs) as a new material is attracting extensive attention. The pretreatment and mechanical fibrillation are the two main stages involved in the preparation of LCNFs, and lignin plays the important role of these two stages. This review discussed the interaction between lignin and chemicals in the pretreatment stage, and discovered the general law of the effect of lignin in the mechanical fibrillation stage.Lignin exhibits both promotion and inhibition effects on mechanical fibrillation, and the mutual competition between the two effects ultimately affects the energy consumption, morphology and yield of LCNFs. Furthermore, the recent research progress related to the contributions of lignin on the functional application of LCNFs was summarized, aiming to provide profound guidance for the preparation and application of LCNFs. 展开更多
关键词 Lignocellulose nanofibers lignin FIBRILLATION CELLULOSE PRETREATMENT
下载PDF
Selective photocatalytic aerobic oxidative cleavage of lignin C–O bonds over sodium lignosulfonate modified Fe_(3)O_(4)/TiO_(2)
18
作者 Kejia Wu Jinrong Liang +4 位作者 Sijie Liu Yimin Huang Minglong Cao Qiang Zeng Xuehui Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期89-100,共12页
Lignocellulose shows significantly potential in sustainable conversion to high-quality fuel and valueadded chemicals with the demands for realizing the rapid cycle of carbon resources and helping to reach carbon neutr... Lignocellulose shows significantly potential in sustainable conversion to high-quality fuel and valueadded chemicals with the demands for realizing the rapid cycle of carbon resources and helping to reach carbon neutrality in nature.Selective tailoring of α-O-4,β-O-4,etc.linkages in lignin has always been viewed as "death blow" for its depolymerization.Herein,novel sodium lignosulfonate(SL) modified Fe_(3)O_(4)/TiO_(2)(SL-Fe_(3)O_(4)/TiO_(2)) spherical particles have been developed and used as catalysts for selectively photocatalytic oxidative cleavage of organosolv lignin.As expected,80% selective conversion of lignin in C2-C4 esters has been achieved,while C-O bonds in lignin model compounds can be effectively cleaved.Other than normal hydroxyl radical-mediated photocatalytic depolymerization of lignin over TiO_(2)-based materials,in this contribution,mechanism studies indicate that photogenerated holes and superoxide anion radicals are main active species,which trigger the cleavage of α/β-O-4 bond,and the isotopelabeling study confirms the crucial factor of C_β-H dehydrogenation in cleavage of β-O-4 bonds. 展开更多
关键词 lignin Photocatalytic oxidation Selective cleavage Titanium dioxide
下载PDF
HbNST1 is a positive regulator of the lignin accumulation in strawflower bracts
19
作者 Palinuer Aiwaili Yujing Deng +3 位作者 Wenwen Liu Bo Hong Xin Zhao Zhaoyu Gu 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第5期1013-1023,共11页
Strawflower(Helichrysum bracteatum)capitula have papery bracts and thus have the qualities of a naturally dried flower.The involucral bract cells have a secondary cell wall(SCW)of which a crucial component is lignin.A... Strawflower(Helichrysum bracteatum)capitula have papery bracts and thus have the qualities of a naturally dried flower.The involucral bract cells have a secondary cell wall(SCW)of which a crucial component is lignin.Although the constituents of SCWs have been studied extensively in plants,little is known of the mechanism regulating SCW formation,especially lignin biosynthesis in the involucral bracts of strawflower.In this study,a homolog of NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1,designated Hb NST1,was identified as a positive regulator of lignin biosynthesis in strawflower.The transcript level of Hb NST1 was the highest in the involucral bracts.Subcellular localization analysis indicated that Hb NST1 was localized to the nucleus.Overexpression of Hb NST1 in Chrysanthemum indicum promoted the expression of a gene related to lignin biosynthesis,a homolog of cinnamyl alcohol dehydrogenase,designated Ci CAD,suggesting that Hb NST1 was associated with the accumulation of lignin in the SCW of the involucral bracts.Taken together,the results suggested that Hb NST1 positively regulated lignin accumulation in the involucral bracts and mediated the expression of lignin biosynthesis-related genes in strawflower. 展开更多
关键词 Strawflower CHRYSANTHEMUM lignin HbNST1
下载PDF
Revelation of bimolecular tautomerization induced by the concerted and radical interactions in lignin pyrolysis
20
作者 Wen-luan Xie Bin Hu +4 位作者 Wen-ming Zhang He-long Li Guo-yong Song Ji Liu Qiang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期1-10,共10页
Bimolecular interactions play crucial roles in lignin pyrolysis.The tautomerization of key intermediates has a significant impact on the formation of stable products,whereas bimolecular tautomerization has been rarely... Bimolecular interactions play crucial roles in lignin pyrolysis.The tautomerization of key intermediates has a significant impact on the formation of stable products,whereas bimolecular tautomerization has been rarely clarified.In the present work,the bimolecular tautomerization mechanism induced by both concerted and radical interactions was proposed and carefully confirmed.A characteristicβ-O-4 lignin dimer,2-phenoxy-1-phenylethanol(α-OH-PPE),was used as the model compound to reveal two representative keto-phenol and enol-keto tautomerism mechanisms,based on theoretical calculations combined with pyrolysis experiments.The results indicate that the unimolecular tautomerism as the rate-determining step limits product generation,due to fairly high energy barriers.While the free hydroxy compounds and radicals derived from initial pyrolysis can further initiate bimolecular tautomerism reactions through the one-step concerted hydroxyl-assisted hydrogen transfer(hydroxylAHT)and two-step radical hydrogen abstraction interactions,respectively.By alleviating and even avoiding the large ring tension of tautomerism,the unstable tautomers(2,4-cyclohexadienone and1-hydroxy styrene)can be rapidly tautomerized into stable phenol and acetophenone with the help of intermolecular interaction.Benefitting from the significant advantage of retro-ene fragmentation in breaking theβ-O-4 bond to form tautomers,a large amount of stable phenolic and ketone products can be generated following bimolecular tautomerization in the pyrolysis ofβ-O-4 linked lignin. 展开更多
关键词 lignin pyrolysis Interaction mechanism TAUTOMERISM Hydroxyl-assisted hydrogen transfer Radical chain reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部