Background:Ischemia-reperfusion injury(IRI)poses a significant challenge to liver transplantation(LT).The underlying mechanism primarily involves overactivation of the immune system.Heat shock protein 110(HSP110)funct...Background:Ischemia-reperfusion injury(IRI)poses a significant challenge to liver transplantation(LT).The underlying mechanism primarily involves overactivation of the immune system.Heat shock protein 110(HSP110)functions as a molecular chaperone that helps stabilize protein structures.Methods:An IRI model was established by performing LT on Sprague-Dawley rats,and HSP110 was silenced using siRNA.Hematoxylin-eosin staining,TUNEL,immunohistochemistry,ELISA and liver enzyme analysis were performed to assess IRI following LT.Western blotting and quantitative reverse transcription-polymerase chain reaction were conducted to investigate the pertinent molecular changes.Results:Our findings revealed a significant increase in the expression of HSP110 at both the mRNA and protein levels in the rat liver following LT(P<0.05).However,when rats were injected with siRNAHSP110,IRI subsequent to LT was notably reduced(P<0.05).Additionally,the levels of liver enzymes and inflammatory chemokines in rat serum were significantly reduced(P<0.05).Silencing HSP110 with siRNA resulted in a marked decrease in M1-type polarization of Kupffer cells in the liver and downregulated the NF-κB pathway in the liver(P<0.05).Conclusions:HSP110 in the liver promotes IRI after LT in rats by activating the NF-κB pathway and inducing M1-type polarization of Kupffer cells.Targeting HSP110 to prevent IRI after LT may represent a promising new approach for the treatment of LT-associated IRI.展开更多
Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate w...Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.Methods:After gavage feeding polydatin once daily for a week,mice underwent a partial hepatic I/R procedure.Serum alanine aminotransferase(ALT)/aspartate aminotransferase(AST),hematoxylin-eosin(H&E)and TdT-mediated dUTP nick-end labeling(TUNEL)staining were used to evaluate liver injury.The severity related to the inflammatory response and reactive oxygen species(ROS)production was also investigated.Furthermore,immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.Results:Compared with the I/R group,polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis.The oxidative stress marker(dihydroethidium fluorescence,malondialdehyde,superoxide dismutase and glutathione peroxidase)and I/R related inflammatory cytokines(interleukin1β,interleukin-10 and tumor necrosis factor-α)were significantly suppressed after polydatin treatment.In addition,the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro.Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.Conclusions:Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NFκB signaling.展开更多
Renal unilateral ischemia-reperfusion injury(UIRI)constitutes a significant global health challenge,with poor recovery leading to chronic kidney disease and subsequent renal fibrosis.Extracellular vesicles(EVs)present...Renal unilateral ischemia-reperfusion injury(UIRI)constitutes a significant global health challenge,with poor recovery leading to chronic kidney disease and subsequent renal fibrosis.Extracellular vesicles(EVs)present substantial potential benefits for renal diseases.However,the limited yield and efficacy of EVs produced through traditional methodologies(2D-EVs)severely restrict their widespread application.Moreover,the efficient and effective strategies for using EVs in UIRI treatment and their mechanisms remain largely unexplored.In this study,we propose an innovative approach by integrating bioprinted mesenchymal stem cell microfiber extracellular vesicles production technology(3D-EVs)with a tail vein injection method,introducing a novel treatment strategy for UIRI.Our comparison of the biological functions of 2D-EVs and 3D-EVs,both in vitro and in vivo,reveals that 3D-EVs significantly outperform 2D-EVs.Specifically,in vitro,3D-EVs demonstrate a superior capacity to enhance the proliferation and migration of NRK-52E cells and mitigate hypoxia/reoxygenation(H/R)-induced injuries by reducing epithelial-mesenchymal transformation,extracellular matrix deposition,and ferroptosis.In vivo,3D-EVs exhibit enhanced therapeutic effects,as evidenced by improved renal function and decreased collagen deposition in UIRI mouse kidneys.We further elucidate the mechanism by which 3D-EVs derived from KLF15 ameliorate UIRI-induced tubular epithelial cells(TECs)ferroptosis through the modulation of SLC7A11 and GPX4 expression.Our findings suggest that bioprinted mesenchymal stem cells microfiberderived EVs significantly ameliorate renal UIRI,opening new avenues for effective and efficient EV-based therapies in UIRI treatment.展开更多
BACKGROUND Myocardial ischemia-reperfusion injury(MIRI)poses a prevalent challenge in current reperfusion therapies,with an absence of efficacious interventions to address the underlying causes.AIM To investigate whet...BACKGROUND Myocardial ischemia-reperfusion injury(MIRI)poses a prevalent challenge in current reperfusion therapies,with an absence of efficacious interventions to address the underlying causes.AIM To investigate whether the extracellular vesicles(EVs)secreted by adipose mesenchymal stem cells(ADSCs)derived from subcutaneous inguinal adipose tissue(IAT)underγ-aminobutyric acid(GABA)induction(GABA-EVs^(IAT))demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms.METHODS We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA.We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays.The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds.To explore the functional RNA diversity between EVs^(IAT)and GABA-EVs^(IAT),we employed microRNA(miR)sequencing.Through a dual-luciferase reporter assay,we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein(TXNIP).Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction.RESULTS Our study demonstrates that,under the influence of GABA,ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs.Consequently,this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention,ultimately resulting in myocardial protection.On a molecular mechanism level,EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes.CONCLUSION Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs,thereby regulating the expression of TXNIP.The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.展开更多
The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically revie...The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.展开更多
Background:Retinal ischemia/reperfusion(I/R)injury often results in vision loss,and effective clinical management options are currently lacking.Shikang granules(SKG)are traditional Chinese medicine-based preparations ...Background:Retinal ischemia/reperfusion(I/R)injury often results in vision loss,and effective clinical management options are currently lacking.Shikang granules(SKG)are traditional Chinese medicine-based preparations commonly used in clinical practice for treating optic atrophy.Methods:Despite decades of clinical use,the precise mechanism of action(MoA)of SKG remains elusive.Here,we employ a network pharmacological approach to elucidate its MoA by identifying active ingredients and relevant targets using the Traditional Chinese Medicine System Pharmacology Database and Analytical Platform.Targets associated with retinal I/R injury were sourced from GeneCards,Online Mendelian Inheritance in Man,and DisGeNET.Venny software facilitated the identification of intersecting targets,which were then subjected to gene ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis.To validate the protective effect and explore the MoA of SKG in retinal I/R injuries,we conducted experiments using rat models.Results:Our animal experiments demonstrated that SKG mitigated apoptosis following retinal I/R injury by upregulating the expression of the anti-apoptotic protein Bcl-2 and downregulating the expression of BAX,Caspase-9,Caspase-3,PARP,and cytochrome C.Additionally,SKG was found to increase the expression of PI3K and AKT.Conclusions:SKG may exert its protective effects by inhibiting apoptosis through modulation of pro-apoptotic and anti-apoptotic protein expression,as well as activation of the PI3K/AKT pathway.展开更多
Background:Ischemia-reperfusion can worsen myocardial damage and increase the risk of death.Studies have revealed that ischemic preconditioning provides the best endogenous protection against myocardial ischemia-reper...Background:Ischemia-reperfusion can worsen myocardial damage and increase the risk of death.Studies have revealed that ischemic preconditioning provides the best endogenous protection against myocardial ischemia-reperfusion injury(MIRI),and the principle of electroacupuncture(EA)preconditioning is comparable to that of myocardial ischemic preconditioning adaption.Our earlier research demonstrated that EA pretreatment inhibits the expression of calmodulin-dependent protein kinase IIδ(CaMKIIδ),sodium/calcium exchanger 1(NCX1),and cyclophilin D,hence providing protection against MIRI.However,the exact mechanism is still unknown.The expression of NCX1 mRNA is directly regulated by microRNA-214(miR-214).Moreover,it suppresses the levels of CaMKIIδand cyclophilin D.Whether these variables contribute to EA preconditioning to improve MIRI needs to be investigated,though.This study aimed to preliminarily determine whether EA pretreatment ameliorates MIRI by modulating the miR-214-3p/NCX1 axis.Methods:We used a rat MIRI model to investigate the effect of EA pretreatment on MIRI and the expression of miR-214-3p.In addition,adenovirus injection inhibited miR-214-3p expression in the rat MIRI model,and the influence of EA pretreatment towards MIRI was observed in the context of blocked miR-214-3p expression.Both the myocardial histological abnormalities and the alterations in the ST segment of the rat electrocardiogram were analyzed.NCX1 mRNA,cyclophilin D,and CaMKIIδexpression levels were also analyzed.Results:EA pretreatment improved MIRI.In rats with MIRI,EA administration increased miR-214-3p expression while decreasing NCX1 mRNA,cyclophilin D,and CaMKIIδproteins in cardiac tissues.The beneficial effect of EA pretreatment against MIRI was reversed,coupled with elevated levels of NCX1 mRNA,cyclophilin D,and CaMKIIδprotein expression,when an adenovirus injection disrupted the expression of miR-214-3p.Conclusions:Our findings preliminarily show that EA pretreatment inhibits the expression of NCX1 mRNA,cyclophilin D,and CaMKIIδproteins via miR-214-3p,hence exerting MIRI protection.展开更多
Early or ultra-early pharmacological thrombolysis together with mechanical thrombectomy are key treatments for ischemic stroke,and both are aimed at vascular recanalization and improved collateral circulation.While th...Early or ultra-early pharmacological thrombolysis together with mechanical thrombectomy are key treatments for ischemic stroke,and both are aimed at vascular recanalization and improved collateral circulation.While these methods enhance tissue perfusion in the ischemic penumbra,they also trigger complex neurotoxic reactions,including apoptosis,acidosis,ion imbalance,oxidative stress,and pyroptosis,exacerbating cerebral ischemia-reperfusion injury(CIRI).Pyroptosis,a recently discovered form of programmed cell death driven by inflammation,plays a significant role in neuronal death during CIRI.This study reviews the regulatory mechanisms of pyroptosis in CIRI.展开更多
Background:Hepatic ischemia-reperfusion injury(HIRI)is a common complication of liver surgeries,such as hepatectomy and liver transplantation.In recent years,several non-coding RNAs(nc RNAs)including long non-coding R...Background:Hepatic ischemia-reperfusion injury(HIRI)is a common complication of liver surgeries,such as hepatectomy and liver transplantation.In recent years,several non-coding RNAs(nc RNAs)including long non-coding RNAs(lnc RNAs)and micro RNAs(mi RNAs)have been identified as factors involved in the pathological progression of HIRI.In this review,we summarized the latest research on lnc RNAs,mi RNAs and the lnc RNA-mi RNA regulatory networks in HIRI.Data sources:The Pub Med and Web of Science databases were searched for articles published up to December 2021 using the following keywords:“hepatic ischemia-reperfusion injury”,“lnc RNA”,“long noncoding RNA”,“mi RNA”and“micro RNA”.The bibliography of the selected articles was manually screened to identify additional studies.Results:The mechanism of HIRI is complex,and involves multiple lnc RNAs and mi RNAs.The roles of lnc RNAs such as AK139328,CCAT1,MALAT1,TUG1 and NEAT1 have been established in HIRI.In addition,numerous mi RNAs are associated with apoptosis,autophagy,oxidative stress and cellular inflammation that accompany HIRI pathogenesis.Based on the literature,we conclude that four lnc RNA-mi RNA regulatory networks mediate the pathological progression of HIRI.Furthermore,the expression levels of some lnc RNAs and mi RNAs undergo significant changes during the progression of HIRI,and thus are potential prognostic markers and therapeutic targets.Conclusions:Complex lnc RNA-mi RNA-m RNA networks regulate HIRI progression through mutual activation and antagonism.It is necessary to screen for more HIRI-associated lnc RNAs and mi RNAs in order to identify novel therapeutic targets.展开更多
Despite improvement in cardiopulmonary resuscitation(CPR)performance,cardiac arrest(CA)is still associated with poor prognosis.The high mortality rate is due to multi-organ dysfunction caused by cerebral ischemia and ...Despite improvement in cardiopulmonary resuscitation(CPR)performance,cardiac arrest(CA)is still associated with poor prognosis.The high mortality rate is due to multi-organ dysfunction caused by cerebral ischemia and reperfusion injury(I/R).The guidelines for CPR suggest the use of therapeutic hypothermia(TH)as an effective treatment to decrease mortality and the only approach confirmed to reduce I/R injury.During TH,sedative agents(propofol)and analgesia agents(fentanyl)are commonly used to prevent shiver and pain.However,propofol has been associated with a number of serious adverse effects such as metabolic acidosis,cardiac asystole,myocardial failure,and death.In addition,mild TH alters the pharmacokinetics of agents(propofol and fentanyl)and reduces their systemic clearance.For CA patients undergoing TH,propofol can be overdosed,leading to delayed awakening,prolonged mechanical ventilation,and other subsequent complications.Ciprofol(HSK3486)is a novel anesthetic agent that is convenient and easy to administer intravenously outside the operating room.Ciprofol is rapidly metabolized and accumulates at low concentrations after continuous infusion in a stable circulatory system compared to propofol.Therefore,we hypothesized that treatment with HSK3486 and mild TH after CA could protect the brain and other organs.展开更多
Background:Liqi Huoxue dripping pill(LQHXDP),a traditional Chinese drug for coronary heart disease,has a protective effect on the heart of rats with myocardial ischemia-reperfusion injury(MIRI)in previous studies;howe...Background:Liqi Huoxue dripping pill(LQHXDP),a traditional Chinese drug for coronary heart disease,has a protective effect on the heart of rats with myocardial ischemia-reperfusion injury(MIRI)in previous studies;however,its mechanism of action remains unclear.The purpose of this study was to investigate the protective mechanism of LQHXDP on MIRI in rats and its relationship with the PI3K/Akt signaling pathway.Methods:In this study,Sprague-Dawley rats were pre-infused with LQHXDP(175 mg/kg/d)for 10 days.PI3K inhibitor LY294002(0.3 mg/kg)was intravenously injected 15 minutes before ischemia.The rat model of MIRI was established by ligating the left anterior descending coronary artery.Subsequently,cardiac hemodynamics,serum myocardial injury markers,inflammatory factors,myocardial infarct size,antioxidant indexes,myocardial histopathology,and phosphorylation levels of key proteins of PI3K/Akt signaling pathway were assessed in rats.Results:LQHXDP was found to improve cardiac hemodynamic indexes,reduce serum creatine kinase MB isoenzyme activity and cardiac troponin and heart-type fatty acid binding protein levels,lower serum interleukin-1 beta,interleukin-6 and tumour necrosis factorαlevels,reduce the myocardial infarct size and enhance the antioxidant capacity of myocardial tissue in MIRI rats.Pathological analysis revealed that LQHXDP attenuated the extent of myocardial injury and protected mitochondria from damage in MIRI rats.Immunoblot analysis revealed that LQHXDP increased the expression levels of p-Akt and p-GSK-3βin MIRI rat cardiomyocytes.PI3K inhibitor LY294002 could impair these effects of LQHXDP.Conclusion:LQHXDP attenuated myocardial injury,attenuated oxidative stress injury and reduced inflammatory response in MIRI rats,and its protective effects were mediated by activating of PI3K/Akt/GSK-3βsignaling pathway.展开更多
Hepatic ischemia-reperfusion injury(HIRI)is the major complication of liver surgery and liver transplantation,that may increase the postoperative morbidity,mortality,tumor progression,and metastasis.The underlying mec...Hepatic ischemia-reperfusion injury(HIRI)is the major complication of liver surgery and liver transplantation,that may increase the postoperative morbidity,mortality,tumor progression,and metastasis.The underlying mechanisms have been extensively investigated in recent years.Among these,oxidative stress,inflammatory responses,immunoreactions,and cell death are the most studied.Non-coding RNAs(ncRNAs)are defined as the RNAs that do not encode proteins,but can regulate gene expressions.In recent years,ncRNAs have emerged as research hotspots for various diseases.During the progression of HIRI,ncRNAs are differentially expressed,while these dysregulations of ncRNAs,in turn,have been verified to be related to the above pathological processes involved in HIRI.ncRNAs mainly contain microRNAs,long ncRNAs,and circular RNAs,some of which have been reported as biomarkers for early diagnosis or assessment of liver damage severity,and as therapeutic targets to attenuate HIRI.Here,we briefly summarize the common pathophysiology of HIRI,describe the current knowledge of ncRNAs involved in HIRI in animal and human studies,and discuss the potential of ncRNA-targeted therapeutic strategies.Given the scarcity of clinical trials,there is still a long way to go from pre-clinical to clinical application,and further studies are needed to uncover their potential as therapeutic targets.展开更多
Background:Currently,no drugs can specifically improve clinical cardiac ischemia-reperfusion injury or the prognosis of hemodialysis.Salvianolic acid B(SalB)is a widely used cardiac protectant;however,its clinical app...Background:Currently,no drugs can specifically improve clinical cardiac ischemia-reperfusion injury or the prognosis of hemodialysis.Salvianolic acid B(SalB)is a widely used cardiac protectant;however,its clinical application is limited by its low oral bioavailability and poor intestinal absorption.The exploration of its preparation and clinical applications has become a research hotspot in recent years.Methods:To determine whether mesoporous silica nanoparticles(MSNs)efficiently delivered SalB to the heart and SalB@MSNs-RhB reduced myocardial ischemia-reperfusion injury,we constructed a myocardial ischemia-reperfusion male rat model,hypoxia/reoxygenation cardiomyocytes,and treated them with SalB@MSNs-RhB.Results:SalB@MSNs-RhB showed improved bioavailability,therapeutic effect,heightened JAK2/STAT3-dependent pro-survival signaling,and antioxidant responses,thereby protecting cardiomyocytes from ischemia-reperfusion injury-induced oxidative stress and apoptosis.Conclusion:This use of SalB-loaded nanoparticles and investigation of their mechanism of action may provide a new strategy for treating cardiomyocytes.Thus,hypoxia/reoxygenation promotes the clinical application of SalB.展开更多
Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart f...Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart failure, and it is particularly important to seek new strategies to mitigate reperfusion injury. In this paper, we will investigate whether atorvastatin can alleviate myocardial ischemia-reperfusion injury and verify its molecular mechanism. Methods: We successfully constructed a hypoxia-reperfusion (H/R) H9c2 cell model and transfected miR-26a-5p mimic, miR-26a-5p inhibitor and its negative control NC-mimic or NC-inhibitor into H9c2 cells using a transfection kit. The expression of miR-26a-5p and FOXO1 were detected by RT-qPCR assay, the expression of related proteins by Western blot assay, the cell viability of H9c2 cells by CCK-8 assay, the apoptosis rate of H9c2 cells by flow cytometry, the CK and LDH activity in cells by CK and LDH assay kits. The targeting relationship between miR-26a-5p and FOXO1 was verified by dual luciferase reporter gene assay. Results: MiR-26a-5p expression was decreased in H/R-induced cells and FOXO1 expression was increased in H/R-induced cells. Atorvastatin alleviated H/R injury in cardiomyocytes and was most effective at a concentration of 1 μM. Atorvastatin alleviated H/R injury in cardiomyocytes by upregulating miR-26a-5p expression, miR-26a-5p and FOXO1 were negatively regulated by targeting. Conclusion: Atorvastatin can alleviate H/R injury in cardiomyocytes by regulating miR-26a-5p/FOXO1.展开更多
Objective To investigate the effect of H2S on lower limb ischemia-reperfusion (LIR) induced lung injury and explore the underlying mechanism. Methods Wistar rats were randomly divided into control group, IR group, I...Objective To investigate the effect of H2S on lower limb ischemia-reperfusion (LIR) induced lung injury and explore the underlying mechanism. Methods Wistar rats were randomly divided into control group, IR group, IR+ Sodium Hydrosulphide (NariS) group and IR+ DL-propargylglycine (PPG) group. IR group as lung injury model induced by LIR were given 4 h reperfusion following 4 h ischemia of bilateral hindlimbs with rubber bands. NariS (0.78 mg/kg) as exogenous H2S donor and PPG (60 mg/kg) which can suppress endogenous H2S production were administrated before LIR, respectively. The lungs were removed for histologic analysis, the determination of wet-to-dry weight ratios and the measurement of mRNA and protein levels of aquaporin-1 (AQP1), aquaporin-5 (AQP5) as indexes of water transport abnormality, and mRNA and protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary-response gene 88 (MyD88) and p-NF-KB as indexes of inflammation. Results LIR induced lung injury was accompanied with upregulation of TLR4-Myd88-NF-κB pathway and downregulation of AQP1/AQP5. NariS pre-treatment reduced lung injury with increasing AQP1/AQP5 expression and inhibition of TLR4-Myd88-NF-KB pathway, but PPG adjusted AO.PJAO.Ps and TLR4 pathway to the opposite side and exacerbated lung injury. Conclusion Endogenous H2S, TLR4-Myd88-NF-κB pathway and AQP1/AQP5 were involved in LIR induced lung injury. Increased H2S would alleviate lung injury and the effect is at least partially depend on the adjustment of TLR4-Myd88-NF-κB pathway and AQP1/AQP5 expression to reduce inflammatory reaction and lessen pulmonary edema.展开更多
AIM:To investigate the protective effect of penehyclidine hydrochloride post-conditioning in the damage to the barrier function of the small intestinal mucosa caused by limb ischemia-reperfusion(LIR) injury. METHODS:M...AIM:To investigate the protective effect of penehyclidine hydrochloride post-conditioning in the damage to the barrier function of the small intestinal mucosa caused by limb ischemia-reperfusion(LIR) injury. METHODS:Male Wistar rats were randomly divided into three groups(36 rats each) :the sham-operation group(group S) ,lower limb ischemia-reperfusion group(group LIR) ,and penehyclidine hydrochloride postconditioning group(group PHC) .Each group was divided into subgroups(n=6 in each group) according to ischemic-reperfusion time,i.e.immediately 0 h(T1) ,1 h(T2) ,3 h(T3) ,6 h(T4) ,12 h(T5) ,and 24 h(T6) .Bilateral hind-limb ischemia was induced by rubber band application proximal to the level of the greater trochanter for 3 h.In group PHC,0.15 mg/kg of penehyclidine hydrochloride was injected into the tail vein immediately after 3 h of bilateral hind-limb ischemia.The designated rats were sacrificed at different time-points of reperfusion;diamine oxidase(DAO) ,superoxide dismutase(SOD) activity,myeloperoxidase(MPO) of small intestinal tissue,plasma endotoxin,DAO,tumor necrosis factor-α(TNF-α) ,and interleukin(IL) -10 in serum were detected in the rats. RESULTS:The pathological changes in the small intestine were observed under light microscope.The levels of MPO,endotoxin,serum DAO,and IL-10 at T1-T6,and TNF-αlevel at T1-T4 increased in groups LIR and PHC(P<0.05) compared with those in group S,but tissue DAO and SOD activity at T1-T6 decreased(P<0.05) .In group PHC,the tissue DAO and SOD activity at T2-T6,and IL-10 at T2-T5 increased to higher levels than those in group LIR(P<0.05) ;however,the levels of MPO,endotoxin,and DAO in the blood at T2-T6,and TNF-αat T2 and T4 decreased(P<0.05) . CONCLUSION:Penehyclidine hydrochloride post-conditioning may reduce the permeability of the small intestines after LIR.Its protection mechanisms may be related to inhibiting oxygen free radicals and inflammatory cytokines for organ damage.展开更多
To investigate the feasibility and effectiveness of establishing porcine ischemia-reperfusion models by ligating the left anterior descending(LAD)coronary artery,we first randomly divided 16 male Bama pigs into a sham...To investigate the feasibility and effectiveness of establishing porcine ischemia-reperfusion models by ligating the left anterior descending(LAD)coronary artery,we first randomly divided 16 male Bama pigs into a sham group and a model group.After anesthesia,we separated the arteries and veins.Subsequently,we rapidly located the LAD coronary artery at the beginning of its first diagonal branch through a mid-chest incision.Then,we loosened and released the ligation line after five minutes of pre-occlusion.Finally,we ligated the LAD coronary artery in situ two minutes later and loosened the ligature 60 min after ischemia.Compared with the sham group,electrocardiogram showed multiple continuous lead ST-segment elevations,and ultrasound cardiogram showed significantly lower ejection fraction and left ventricular fractional shortening at one hour and seven days post-operation in the model group.Twenty-four hours after the operation,cardiac troponin T and creatine kinase-MB isoenzyme levels significantly increased in the model group,compared with the sham group.Hematoxylin and eosin staining showed the presence of many inflammatory cells infiltrating the interstitium of the myocardium in the model group but not in the sham group.Masson staining revealed a significant increase in infarct size in the ischemia/reperfusion group.All eight pigs in the model group recovered with normal sinus heart rates,and the survival rate was 100%.In conclusion,the method can provide an accurate and stable large animal model for preclinical research on ischemia/reperfusion with a high success rate and homogeneity of the myocardial infarction area.展开更多
AIM: To investigate whether heat shock pretreatment(HSP) improves mesenchymal stem cell(MSC) repair via autophagy following hepatic ischemia-reperfusion injury(HIRI).METHODS: Apoptosis of MSCs was induced by 250 m M h...AIM: To investigate whether heat shock pretreatment(HSP) improves mesenchymal stem cell(MSC) repair via autophagy following hepatic ischemia-reperfusion injury(HIRI).METHODS: Apoptosis of MSCs was induced by 250 m M hydrogen peroxide(H2O2) for 6 h. HSP was carried out using a 42 ℃ water bath for 1, 2 or 3 h. Apoptosis of MSCs was analyzed by flow cytometry, and Western blot was used to detect Bcl-2, Bax and cytochrome C expression. Autophagy of MSCs was analyzed by flow cytometry and transmission electron microscopy, and the expression of beclin Ⅰ?and LC3-Ⅱ was detected by Western blot. MSCs were labeled in vivo with the fluorescent dye, CM-Dil, and subsequently transplanted into the portal veins of rats that had undergone HIRI. Liver levels of proliferating cell nuclear antigen(PCNA) were quantified by fluorescent microscopy. Serum aminotransferase activity and the extent of HIRI were also assessed at each time point.RESULTS: HSP for 2 h reduced apoptosis of MSCs induced by H2O2 as seen by a decrease in apoptotic rate, a decrease in Bax and cytochrome C expression and an increase in Bcl-2 expression(P < 0.001). In addition, HSP for 2 h induced autophagy of MSCs exposed to H2O2 as shown by an increase in acidic vesicular organelle-positive cells, beclin 1 and LC3-Ⅱ expression, and autophagosome formation(P < 0.05). Treatment with 3-methyladenine attenuated HSPinduced autophagy and abolished the protective effects of HSP on the apoptosis of MSCs. Rapamycin failed to have additional effects on either autophagy or apoptosis compared with HSP alone. The phosphorylation of p38 MAPK was significantly elevated and the phosphorylation of m TOR was downregulated in heat shock pretreated MSCs. Treatment with the p38 MAPK inhibitor, SB203580, reduced HSP-induced autophagy in MSCs. In vivo studies showed that the transplantation of HSP-MSCs resulted in lower serum aminotransferase levels, lower Suzuki scores, improved histopathology and an increase in PCNA-positive cells(P < 0.05).CONCLUSION: HSP effectively induces autophagy following exposure to H2O2 via the p38MAPK/m TOR pathway, which leads to enhanced MSC survival and improved MSC repair following HIRI in rats.展开更多
A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cyto-plasmic constituents, and contributes significantly to the degree of myocardial isc...A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cyto-plasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated cata-bolic cellular‘housekeeping’ process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protec-tive mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the va-riability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic ma-nipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling.展开更多
Hepatic ischemia-reperfusion injury(IRI) is a patho-physiological event post liver surgery or transplantation and significantly influences the prognosis of liver func-tion. The mechanisms of IRI remain unclear, and ef...Hepatic ischemia-reperfusion injury(IRI) is a patho-physiological event post liver surgery or transplantation and significantly influences the prognosis of liver func-tion. The mechanisms of IRI remain unclear, and effec-tive methods are lacking for the prevention and therapy of IRI. Several factors/pathways have been implicated in the hepatic IRI process, including anaerobic metabo-lism, mitochondria, oxidative stress, intracellular cal-cium overload, liver Kupffer cells and neutrophils, and cytokines and chemokines. The role of nitric oxide(NO)in protecting against liver IRI has recently been report-ed. NO has been found to attenuate liver IRI through various mechanisms including reducing hepatocellular apoptosis, decreasing oxidative stress and leukocyte adhesion, increasing microcirculatory flow, and enhanc-ing mitochondrial function. The purpose of this review is to provide insights into the mechanisms of liver IRI, indicating the potential protective factors/pathways that may help to improve therapeutic regimens for control-ling hepatic IRI during liver surgery, and the potential therapeutic role of NO in liver IRI.展开更多
基金supported by grants from the Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX0148)the National Natural Science Foundation of China (82170666 and 81873592)Chongqing Research Program of Technological Innovation and Application Demonstration (cstc2021jscx-gksbX0060)
文摘Background:Ischemia-reperfusion injury(IRI)poses a significant challenge to liver transplantation(LT).The underlying mechanism primarily involves overactivation of the immune system.Heat shock protein 110(HSP110)functions as a molecular chaperone that helps stabilize protein structures.Methods:An IRI model was established by performing LT on Sprague-Dawley rats,and HSP110 was silenced using siRNA.Hematoxylin-eosin staining,TUNEL,immunohistochemistry,ELISA and liver enzyme analysis were performed to assess IRI following LT.Western blotting and quantitative reverse transcription-polymerase chain reaction were conducted to investigate the pertinent molecular changes.Results:Our findings revealed a significant increase in the expression of HSP110 at both the mRNA and protein levels in the rat liver following LT(P<0.05).However,when rats were injected with siRNAHSP110,IRI subsequent to LT was notably reduced(P<0.05).Additionally,the levels of liver enzymes and inflammatory chemokines in rat serum were significantly reduced(P<0.05).Silencing HSP110 with siRNA resulted in a marked decrease in M1-type polarization of Kupffer cells in the liver and downregulated the NF-κB pathway in the liver(P<0.05).Conclusions:HSP110 in the liver promotes IRI after LT in rats by activating the NF-κB pathway and inducing M1-type polarization of Kupffer cells.Targeting HSP110 to prevent IRI after LT may represent a promising new approach for the treatment of LT-associated IRI.
基金This study was supported by grants from the National Natural Science Foundation of China(No.81970563)the Medical Health Science and Technology Project of Health Commission of Zhejiang Province(2019RC055).
文摘Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.Methods:After gavage feeding polydatin once daily for a week,mice underwent a partial hepatic I/R procedure.Serum alanine aminotransferase(ALT)/aspartate aminotransferase(AST),hematoxylin-eosin(H&E)and TdT-mediated dUTP nick-end labeling(TUNEL)staining were used to evaluate liver injury.The severity related to the inflammatory response and reactive oxygen species(ROS)production was also investigated.Furthermore,immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.Results:Compared with the I/R group,polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis.The oxidative stress marker(dihydroethidium fluorescence,malondialdehyde,superoxide dismutase and glutathione peroxidase)and I/R related inflammatory cytokines(interleukin1β,interleukin-10 and tumor necrosis factor-α)were significantly suppressed after polydatin treatment.In addition,the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro.Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.Conclusions:Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NFκB signaling.
基金supported by the Natural Science Foundation of China(Grant No.52075285)the Natural Science Foundation of Guang Dong Province(2019A1515010386,2024A1515010266).
文摘Renal unilateral ischemia-reperfusion injury(UIRI)constitutes a significant global health challenge,with poor recovery leading to chronic kidney disease and subsequent renal fibrosis.Extracellular vesicles(EVs)present substantial potential benefits for renal diseases.However,the limited yield and efficacy of EVs produced through traditional methodologies(2D-EVs)severely restrict their widespread application.Moreover,the efficient and effective strategies for using EVs in UIRI treatment and their mechanisms remain largely unexplored.In this study,we propose an innovative approach by integrating bioprinted mesenchymal stem cell microfiber extracellular vesicles production technology(3D-EVs)with a tail vein injection method,introducing a novel treatment strategy for UIRI.Our comparison of the biological functions of 2D-EVs and 3D-EVs,both in vitro and in vivo,reveals that 3D-EVs significantly outperform 2D-EVs.Specifically,in vitro,3D-EVs demonstrate a superior capacity to enhance the proliferation and migration of NRK-52E cells and mitigate hypoxia/reoxygenation(H/R)-induced injuries by reducing epithelial-mesenchymal transformation,extracellular matrix deposition,and ferroptosis.In vivo,3D-EVs exhibit enhanced therapeutic effects,as evidenced by improved renal function and decreased collagen deposition in UIRI mouse kidneys.We further elucidate the mechanism by which 3D-EVs derived from KLF15 ameliorate UIRI-induced tubular epithelial cells(TECs)ferroptosis through the modulation of SLC7A11 and GPX4 expression.Our findings suggest that bioprinted mesenchymal stem cells microfiberderived EVs significantly ameliorate renal UIRI,opening new avenues for effective and efficient EV-based therapies in UIRI treatment.
基金Supported by the National Natural Science Foundation of China,No.82200270.
文摘BACKGROUND Myocardial ischemia-reperfusion injury(MIRI)poses a prevalent challenge in current reperfusion therapies,with an absence of efficacious interventions to address the underlying causes.AIM To investigate whether the extracellular vesicles(EVs)secreted by adipose mesenchymal stem cells(ADSCs)derived from subcutaneous inguinal adipose tissue(IAT)underγ-aminobutyric acid(GABA)induction(GABA-EVs^(IAT))demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms.METHODS We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA.We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays.The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds.To explore the functional RNA diversity between EVs^(IAT)and GABA-EVs^(IAT),we employed microRNA(miR)sequencing.Through a dual-luciferase reporter assay,we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein(TXNIP).Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction.RESULTS Our study demonstrates that,under the influence of GABA,ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs.Consequently,this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention,ultimately resulting in myocardial protection.On a molecular mechanism level,EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes.CONCLUSION Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs,thereby regulating the expression of TXNIP.The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.
基金supported by Yuan Du Scholars,Clinical Research Center of Affiliated Hospital of Shandong Second Medical University,No.2022WYFYLCYJ02Weifang Key Laboratory,Weifang Science and Technology Development Plan Project Medical Category,No.2022YX093.
文摘The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
基金supported by the S&T Program of Xingtai(2023ZC178).
文摘Background:Retinal ischemia/reperfusion(I/R)injury often results in vision loss,and effective clinical management options are currently lacking.Shikang granules(SKG)are traditional Chinese medicine-based preparations commonly used in clinical practice for treating optic atrophy.Methods:Despite decades of clinical use,the precise mechanism of action(MoA)of SKG remains elusive.Here,we employ a network pharmacological approach to elucidate its MoA by identifying active ingredients and relevant targets using the Traditional Chinese Medicine System Pharmacology Database and Analytical Platform.Targets associated with retinal I/R injury were sourced from GeneCards,Online Mendelian Inheritance in Man,and DisGeNET.Venny software facilitated the identification of intersecting targets,which were then subjected to gene ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis.To validate the protective effect and explore the MoA of SKG in retinal I/R injuries,we conducted experiments using rat models.Results:Our animal experiments demonstrated that SKG mitigated apoptosis following retinal I/R injury by upregulating the expression of the anti-apoptotic protein Bcl-2 and downregulating the expression of BAX,Caspase-9,Caspase-3,PARP,and cytochrome C.Additionally,SKG was found to increase the expression of PI3K and AKT.Conclusions:SKG may exert its protective effects by inhibiting apoptosis through modulation of pro-apoptotic and anti-apoptotic protein expression,as well as activation of the PI3K/AKT pathway.
基金supported fiancially by the Natural Science Foundation of Inner Mongolia Autonomous Region in China(Grant No.2018MS08043)Inner Mongolia Autonomous Region Scientific and Technological Achievements Transformation Guidance Project in China(2020PT0030).
文摘Background:Ischemia-reperfusion can worsen myocardial damage and increase the risk of death.Studies have revealed that ischemic preconditioning provides the best endogenous protection against myocardial ischemia-reperfusion injury(MIRI),and the principle of electroacupuncture(EA)preconditioning is comparable to that of myocardial ischemic preconditioning adaption.Our earlier research demonstrated that EA pretreatment inhibits the expression of calmodulin-dependent protein kinase IIδ(CaMKIIδ),sodium/calcium exchanger 1(NCX1),and cyclophilin D,hence providing protection against MIRI.However,the exact mechanism is still unknown.The expression of NCX1 mRNA is directly regulated by microRNA-214(miR-214).Moreover,it suppresses the levels of CaMKIIδand cyclophilin D.Whether these variables contribute to EA preconditioning to improve MIRI needs to be investigated,though.This study aimed to preliminarily determine whether EA pretreatment ameliorates MIRI by modulating the miR-214-3p/NCX1 axis.Methods:We used a rat MIRI model to investigate the effect of EA pretreatment on MIRI and the expression of miR-214-3p.In addition,adenovirus injection inhibited miR-214-3p expression in the rat MIRI model,and the influence of EA pretreatment towards MIRI was observed in the context of blocked miR-214-3p expression.Both the myocardial histological abnormalities and the alterations in the ST segment of the rat electrocardiogram were analyzed.NCX1 mRNA,cyclophilin D,and CaMKIIδexpression levels were also analyzed.Results:EA pretreatment improved MIRI.In rats with MIRI,EA administration increased miR-214-3p expression while decreasing NCX1 mRNA,cyclophilin D,and CaMKIIδproteins in cardiac tissues.The beneficial effect of EA pretreatment against MIRI was reversed,coupled with elevated levels of NCX1 mRNA,cyclophilin D,and CaMKIIδprotein expression,when an adenovirus injection disrupted the expression of miR-214-3p.Conclusions:Our findings preliminarily show that EA pretreatment inhibits the expression of NCX1 mRNA,cyclophilin D,and CaMKIIδproteins via miR-214-3p,hence exerting MIRI protection.
文摘Early or ultra-early pharmacological thrombolysis together with mechanical thrombectomy are key treatments for ischemic stroke,and both are aimed at vascular recanalization and improved collateral circulation.While these methods enhance tissue perfusion in the ischemic penumbra,they also trigger complex neurotoxic reactions,including apoptosis,acidosis,ion imbalance,oxidative stress,and pyroptosis,exacerbating cerebral ischemia-reperfusion injury(CIRI).Pyroptosis,a recently discovered form of programmed cell death driven by inflammation,plays a significant role in neuronal death during CIRI.This study reviews the regulatory mechanisms of pyroptosis in CIRI.
基金supported by grants from the National Natural Sciences Foundation of China(81974442)Guangzhou Health Science and technology project(20202A011010)。
文摘Background:Hepatic ischemia-reperfusion injury(HIRI)is a common complication of liver surgeries,such as hepatectomy and liver transplantation.In recent years,several non-coding RNAs(nc RNAs)including long non-coding RNAs(lnc RNAs)and micro RNAs(mi RNAs)have been identified as factors involved in the pathological progression of HIRI.In this review,we summarized the latest research on lnc RNAs,mi RNAs and the lnc RNA-mi RNA regulatory networks in HIRI.Data sources:The Pub Med and Web of Science databases were searched for articles published up to December 2021 using the following keywords:“hepatic ischemia-reperfusion injury”,“lnc RNA”,“long noncoding RNA”,“mi RNA”and“micro RNA”.The bibliography of the selected articles was manually screened to identify additional studies.Results:The mechanism of HIRI is complex,and involves multiple lnc RNAs and mi RNAs.The roles of lnc RNAs such as AK139328,CCAT1,MALAT1,TUG1 and NEAT1 have been established in HIRI.In addition,numerous mi RNAs are associated with apoptosis,autophagy,oxidative stress and cellular inflammation that accompany HIRI pathogenesis.Based on the literature,we conclude that four lnc RNA-mi RNA regulatory networks mediate the pathological progression of HIRI.Furthermore,the expression levels of some lnc RNAs and mi RNAs undergo significant changes during the progression of HIRI,and thus are potential prognostic markers and therapeutic targets.Conclusions:Complex lnc RNA-mi RNA-m RNA networks regulate HIRI progression through mutual activation and antagonism.It is necessary to screen for more HIRI-associated lnc RNAs and mi RNAs in order to identify novel therapeutic targets.
文摘Despite improvement in cardiopulmonary resuscitation(CPR)performance,cardiac arrest(CA)is still associated with poor prognosis.The high mortality rate is due to multi-organ dysfunction caused by cerebral ischemia and reperfusion injury(I/R).The guidelines for CPR suggest the use of therapeutic hypothermia(TH)as an effective treatment to decrease mortality and the only approach confirmed to reduce I/R injury.During TH,sedative agents(propofol)and analgesia agents(fentanyl)are commonly used to prevent shiver and pain.However,propofol has been associated with a number of serious adverse effects such as metabolic acidosis,cardiac asystole,myocardial failure,and death.In addition,mild TH alters the pharmacokinetics of agents(propofol and fentanyl)and reduces their systemic clearance.For CA patients undergoing TH,propofol can be overdosed,leading to delayed awakening,prolonged mechanical ventilation,and other subsequent complications.Ciprofol(HSK3486)is a novel anesthetic agent that is convenient and easy to administer intravenously outside the operating room.Ciprofol is rapidly metabolized and accumulates at low concentrations after continuous infusion in a stable circulatory system compared to propofol.Therefore,we hypothesized that treatment with HSK3486 and mild TH after CA could protect the brain and other organs.
基金supported by National Natural Science Foundation of China(Grant No.81860873 and 81960864)the Scientific and Technological Projects of Guizhou Province(Qian Kehe Jichu(2016)1401)High-level Talents Project of Guizhou Province(GUTCM(ZQ2018005)).
文摘Background:Liqi Huoxue dripping pill(LQHXDP),a traditional Chinese drug for coronary heart disease,has a protective effect on the heart of rats with myocardial ischemia-reperfusion injury(MIRI)in previous studies;however,its mechanism of action remains unclear.The purpose of this study was to investigate the protective mechanism of LQHXDP on MIRI in rats and its relationship with the PI3K/Akt signaling pathway.Methods:In this study,Sprague-Dawley rats were pre-infused with LQHXDP(175 mg/kg/d)for 10 days.PI3K inhibitor LY294002(0.3 mg/kg)was intravenously injected 15 minutes before ischemia.The rat model of MIRI was established by ligating the left anterior descending coronary artery.Subsequently,cardiac hemodynamics,serum myocardial injury markers,inflammatory factors,myocardial infarct size,antioxidant indexes,myocardial histopathology,and phosphorylation levels of key proteins of PI3K/Akt signaling pathway were assessed in rats.Results:LQHXDP was found to improve cardiac hemodynamic indexes,reduce serum creatine kinase MB isoenzyme activity and cardiac troponin and heart-type fatty acid binding protein levels,lower serum interleukin-1 beta,interleukin-6 and tumour necrosis factorαlevels,reduce the myocardial infarct size and enhance the antioxidant capacity of myocardial tissue in MIRI rats.Pathological analysis revealed that LQHXDP attenuated the extent of myocardial injury and protected mitochondria from damage in MIRI rats.Immunoblot analysis revealed that LQHXDP increased the expression levels of p-Akt and p-GSK-3βin MIRI rat cardiomyocytes.PI3K inhibitor LY294002 could impair these effects of LQHXDP.Conclusion:LQHXDP attenuated myocardial injury,attenuated oxidative stress injury and reduced inflammatory response in MIRI rats,and its protective effects were mediated by activating of PI3K/Akt/GSK-3βsignaling pathway.
基金the National Natural Science Foundation of China,No.82070648the Science and Technology Innovation Program of Hunan Province,No.2021SK4014.
文摘Hepatic ischemia-reperfusion injury(HIRI)is the major complication of liver surgery and liver transplantation,that may increase the postoperative morbidity,mortality,tumor progression,and metastasis.The underlying mechanisms have been extensively investigated in recent years.Among these,oxidative stress,inflammatory responses,immunoreactions,and cell death are the most studied.Non-coding RNAs(ncRNAs)are defined as the RNAs that do not encode proteins,but can regulate gene expressions.In recent years,ncRNAs have emerged as research hotspots for various diseases.During the progression of HIRI,ncRNAs are differentially expressed,while these dysregulations of ncRNAs,in turn,have been verified to be related to the above pathological processes involved in HIRI.ncRNAs mainly contain microRNAs,long ncRNAs,and circular RNAs,some of which have been reported as biomarkers for early diagnosis or assessment of liver damage severity,and as therapeutic targets to attenuate HIRI.Here,we briefly summarize the common pathophysiology of HIRI,describe the current knowledge of ncRNAs involved in HIRI in animal and human studies,and discuss the potential of ncRNA-targeted therapeutic strategies.Given the scarcity of clinical trials,there is still a long way to go from pre-clinical to clinical application,and further studies are needed to uncover their potential as therapeutic targets.
基金We acknowledge the teachers from the Institute of Radiation Medicine,Chinese Academy of Medical Sciences for the I/R help in animal experiments。
文摘Background:Currently,no drugs can specifically improve clinical cardiac ischemia-reperfusion injury or the prognosis of hemodialysis.Salvianolic acid B(SalB)is a widely used cardiac protectant;however,its clinical application is limited by its low oral bioavailability and poor intestinal absorption.The exploration of its preparation and clinical applications has become a research hotspot in recent years.Methods:To determine whether mesoporous silica nanoparticles(MSNs)efficiently delivered SalB to the heart and SalB@MSNs-RhB reduced myocardial ischemia-reperfusion injury,we constructed a myocardial ischemia-reperfusion male rat model,hypoxia/reoxygenation cardiomyocytes,and treated them with SalB@MSNs-RhB.Results:SalB@MSNs-RhB showed improved bioavailability,therapeutic effect,heightened JAK2/STAT3-dependent pro-survival signaling,and antioxidant responses,thereby protecting cardiomyocytes from ischemia-reperfusion injury-induced oxidative stress and apoptosis.Conclusion:This use of SalB-loaded nanoparticles and investigation of their mechanism of action may provide a new strategy for treating cardiomyocytes.Thus,hypoxia/reoxygenation promotes the clinical application of SalB.
文摘Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart failure, and it is particularly important to seek new strategies to mitigate reperfusion injury. In this paper, we will investigate whether atorvastatin can alleviate myocardial ischemia-reperfusion injury and verify its molecular mechanism. Methods: We successfully constructed a hypoxia-reperfusion (H/R) H9c2 cell model and transfected miR-26a-5p mimic, miR-26a-5p inhibitor and its negative control NC-mimic or NC-inhibitor into H9c2 cells using a transfection kit. The expression of miR-26a-5p and FOXO1 were detected by RT-qPCR assay, the expression of related proteins by Western blot assay, the cell viability of H9c2 cells by CCK-8 assay, the apoptosis rate of H9c2 cells by flow cytometry, the CK and LDH activity in cells by CK and LDH assay kits. The targeting relationship between miR-26a-5p and FOXO1 was verified by dual luciferase reporter gene assay. Results: MiR-26a-5p expression was decreased in H/R-induced cells and FOXO1 expression was increased in H/R-induced cells. Atorvastatin alleviated H/R injury in cardiomyocytes and was most effective at a concentration of 1 μM. Atorvastatin alleviated H/R injury in cardiomyocytes by upregulating miR-26a-5p expression, miR-26a-5p and FOXO1 were negatively regulated by targeting. Conclusion: Atorvastatin can alleviate H/R injury in cardiomyocytes by regulating miR-26a-5p/FOXO1.
基金supported by the Military Health Care Foundation during the 12th Five-year Plan Period(11BZ21)the Military Scientific Research Foundation during the 12th Five-year Plan Period(BWS12J051)
文摘Objective To investigate the effect of H2S on lower limb ischemia-reperfusion (LIR) induced lung injury and explore the underlying mechanism. Methods Wistar rats were randomly divided into control group, IR group, IR+ Sodium Hydrosulphide (NariS) group and IR+ DL-propargylglycine (PPG) group. IR group as lung injury model induced by LIR were given 4 h reperfusion following 4 h ischemia of bilateral hindlimbs with rubber bands. NariS (0.78 mg/kg) as exogenous H2S donor and PPG (60 mg/kg) which can suppress endogenous H2S production were administrated before LIR, respectively. The lungs were removed for histologic analysis, the determination of wet-to-dry weight ratios and the measurement of mRNA and protein levels of aquaporin-1 (AQP1), aquaporin-5 (AQP5) as indexes of water transport abnormality, and mRNA and protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary-response gene 88 (MyD88) and p-NF-KB as indexes of inflammation. Results LIR induced lung injury was accompanied with upregulation of TLR4-Myd88-NF-κB pathway and downregulation of AQP1/AQP5. NariS pre-treatment reduced lung injury with increasing AQP1/AQP5 expression and inhibition of TLR4-Myd88-NF-KB pathway, but PPG adjusted AO.PJAO.Ps and TLR4 pathway to the opposite side and exacerbated lung injury. Conclusion Endogenous H2S, TLR4-Myd88-NF-κB pathway and AQP1/AQP5 were involved in LIR induced lung injury. Increased H2S would alleviate lung injury and the effect is at least partially depend on the adjustment of TLR4-Myd88-NF-κB pathway and AQP1/AQP5 expression to reduce inflammatory reaction and lessen pulmonary edema.
基金Supported by Lanzhou City Development Plan of Science and Technology,No.2009-1-52
文摘AIM:To investigate the protective effect of penehyclidine hydrochloride post-conditioning in the damage to the barrier function of the small intestinal mucosa caused by limb ischemia-reperfusion(LIR) injury. METHODS:Male Wistar rats were randomly divided into three groups(36 rats each) :the sham-operation group(group S) ,lower limb ischemia-reperfusion group(group LIR) ,and penehyclidine hydrochloride postconditioning group(group PHC) .Each group was divided into subgroups(n=6 in each group) according to ischemic-reperfusion time,i.e.immediately 0 h(T1) ,1 h(T2) ,3 h(T3) ,6 h(T4) ,12 h(T5) ,and 24 h(T6) .Bilateral hind-limb ischemia was induced by rubber band application proximal to the level of the greater trochanter for 3 h.In group PHC,0.15 mg/kg of penehyclidine hydrochloride was injected into the tail vein immediately after 3 h of bilateral hind-limb ischemia.The designated rats were sacrificed at different time-points of reperfusion;diamine oxidase(DAO) ,superoxide dismutase(SOD) activity,myeloperoxidase(MPO) of small intestinal tissue,plasma endotoxin,DAO,tumor necrosis factor-α(TNF-α) ,and interleukin(IL) -10 in serum were detected in the rats. RESULTS:The pathological changes in the small intestine were observed under light microscope.The levels of MPO,endotoxin,serum DAO,and IL-10 at T1-T6,and TNF-αlevel at T1-T4 increased in groups LIR and PHC(P<0.05) compared with those in group S,but tissue DAO and SOD activity at T1-T6 decreased(P<0.05) .In group PHC,the tissue DAO and SOD activity at T2-T6,and IL-10 at T2-T5 increased to higher levels than those in group LIR(P<0.05) ;however,the levels of MPO,endotoxin,and DAO in the blood at T2-T6,and TNF-αat T2 and T4 decreased(P<0.05) . CONCLUSION:Penehyclidine hydrochloride post-conditioning may reduce the permeability of the small intestines after LIR.Its protection mechanisms may be related to inhibiting oxygen free radicals and inflammatory cytokines for organ damage.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82070367).
文摘To investigate the feasibility and effectiveness of establishing porcine ischemia-reperfusion models by ligating the left anterior descending(LAD)coronary artery,we first randomly divided 16 male Bama pigs into a sham group and a model group.After anesthesia,we separated the arteries and veins.Subsequently,we rapidly located the LAD coronary artery at the beginning of its first diagonal branch through a mid-chest incision.Then,we loosened and released the ligation line after five minutes of pre-occlusion.Finally,we ligated the LAD coronary artery in situ two minutes later and loosened the ligature 60 min after ischemia.Compared with the sham group,electrocardiogram showed multiple continuous lead ST-segment elevations,and ultrasound cardiogram showed significantly lower ejection fraction and left ventricular fractional shortening at one hour and seven days post-operation in the model group.Twenty-four hours after the operation,cardiac troponin T and creatine kinase-MB isoenzyme levels significantly increased in the model group,compared with the sham group.Hematoxylin and eosin staining showed the presence of many inflammatory cells infiltrating the interstitium of the myocardium in the model group but not in the sham group.Masson staining revealed a significant increase in infarct size in the ischemia/reperfusion group.All eight pigs in the model group recovered with normal sinus heart rates,and the survival rate was 100%.In conclusion,the method can provide an accurate and stable large animal model for preclinical research on ischemia/reperfusion with a high success rate and homogeneity of the myocardial infarction area.
基金Supported by Grants from the Clinical Research Special Fund of Wu Jieping Medical FoundationNo.320.6750.12263
文摘AIM: To investigate whether heat shock pretreatment(HSP) improves mesenchymal stem cell(MSC) repair via autophagy following hepatic ischemia-reperfusion injury(HIRI).METHODS: Apoptosis of MSCs was induced by 250 m M hydrogen peroxide(H2O2) for 6 h. HSP was carried out using a 42 ℃ water bath for 1, 2 or 3 h. Apoptosis of MSCs was analyzed by flow cytometry, and Western blot was used to detect Bcl-2, Bax and cytochrome C expression. Autophagy of MSCs was analyzed by flow cytometry and transmission electron microscopy, and the expression of beclin Ⅰ?and LC3-Ⅱ was detected by Western blot. MSCs were labeled in vivo with the fluorescent dye, CM-Dil, and subsequently transplanted into the portal veins of rats that had undergone HIRI. Liver levels of proliferating cell nuclear antigen(PCNA) were quantified by fluorescent microscopy. Serum aminotransferase activity and the extent of HIRI were also assessed at each time point.RESULTS: HSP for 2 h reduced apoptosis of MSCs induced by H2O2 as seen by a decrease in apoptotic rate, a decrease in Bax and cytochrome C expression and an increase in Bcl-2 expression(P < 0.001). In addition, HSP for 2 h induced autophagy of MSCs exposed to H2O2 as shown by an increase in acidic vesicular organelle-positive cells, beclin 1 and LC3-Ⅱ expression, and autophagosome formation(P < 0.05). Treatment with 3-methyladenine attenuated HSPinduced autophagy and abolished the protective effects of HSP on the apoptosis of MSCs. Rapamycin failed to have additional effects on either autophagy or apoptosis compared with HSP alone. The phosphorylation of p38 MAPK was significantly elevated and the phosphorylation of m TOR was downregulated in heat shock pretreated MSCs. Treatment with the p38 MAPK inhibitor, SB203580, reduced HSP-induced autophagy in MSCs. In vivo studies showed that the transplantation of HSP-MSCs resulted in lower serum aminotransferase levels, lower Suzuki scores, improved histopathology and an increase in PCNA-positive cells(P < 0.05).CONCLUSION: HSP effectively induces autophagy following exposure to H2O2 via the p38MAPK/m TOR pathway, which leads to enhanced MSC survival and improved MSC repair following HIRI in rats.
文摘A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cyto-plasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated cata-bolic cellular‘housekeeping’ process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protec-tive mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the va-riability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic ma-nipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling.
基金Supported by National Natural Science Foundation of China,No.81170416 and No.81273264Doctoral Fund of Ministry of Education of China,No.20100061110069+2 种基金Jilin Province Science and Technology Bureau International Cooperation Fund,No.2011742Techpool Research Fund,No.01201046Jilin Province Nature Science Foundation,No.201015178
文摘Hepatic ischemia-reperfusion injury(IRI) is a patho-physiological event post liver surgery or transplantation and significantly influences the prognosis of liver func-tion. The mechanisms of IRI remain unclear, and effec-tive methods are lacking for the prevention and therapy of IRI. Several factors/pathways have been implicated in the hepatic IRI process, including anaerobic metabo-lism, mitochondria, oxidative stress, intracellular cal-cium overload, liver Kupffer cells and neutrophils, and cytokines and chemokines. The role of nitric oxide(NO)in protecting against liver IRI has recently been report-ed. NO has been found to attenuate liver IRI through various mechanisms including reducing hepatocellular apoptosis, decreasing oxidative stress and leukocyte adhesion, increasing microcirculatory flow, and enhanc-ing mitochondrial function. The purpose of this review is to provide insights into the mechanisms of liver IRI, indicating the potential protective factors/pathways that may help to improve therapeutic regimens for control-ling hepatic IRI during liver surgery, and the potential therapeutic role of NO in liver IRI.