提出一种二维线性大间距判别分析(Two dimensional linear maximum margin discriminant analysis,2DLMMDA)的投影算法。该算法一方面采用了有效且稳定的大间距优化准则,引入了Laplacian矩阵,保持了特征矩阵的流形结构,且优化域为Laplac...提出一种二维线性大间距判别分析(Two dimensional linear maximum margin discriminant analysis,2DLMMDA)的投影算法。该算法一方面采用了有效且稳定的大间距优化准则,引入了Laplacian矩阵,保持了特征矩阵的流形结构,且优化域为Laplacian类间散度与Laplacian类内散度之差,能克服Fisher准则带来的小样本问题;另一方面,采用了具有监督信息的判别分析,大大地提高了识别率。为了验证所提出的算法对特征提取的有效性,选择最近邻分类器进行特征分类,最后通过在CASIA(B)步态库上实验。实验结果表明,文中提出的算法具有更高的识别率和识别速度。展开更多
文摘线性拉普拉斯判别准则(Linear Laplacian discrimination,LLD)作为一种非线性特征提取方法得到了较为成功的运用.然而通过分析得知在具体使用LLD方法的过程中还会面临小样本以及如何确定原始样本空间类型的问题.因此,本文引入语境距离度量并结合最大间距判别准则的基本原理提出一种基于语境距离度量的拉普拉斯最大间距判别准则(Contextual-distance metric based Laplacian maximum margin criterion,CLMMC).该准则不但在一定程度上避免小样本问题,而且由于语境距离度量更关注输入样本簇内在的本质结构而不是原始样本空间的类型,从而降低了该准则对特定样本空间的依赖程度.同时通过引入计算语境距离度量的新算法并结合QR分解的基本原理,使得CLMMC在处理高维矢量模式数据时更具适应性和效率.并从理论上讨论CLMMC准则具有的基本性质以及与LLD准则的内在联系.实验证明CLMMC准则具有上述优势.
文摘提出一种二维线性大间距判别分析(Two dimensional linear maximum margin discriminant analysis,2DLMMDA)的投影算法。该算法一方面采用了有效且稳定的大间距优化准则,引入了Laplacian矩阵,保持了特征矩阵的流形结构,且优化域为Laplacian类间散度与Laplacian类内散度之差,能克服Fisher准则带来的小样本问题;另一方面,采用了具有监督信息的判别分析,大大地提高了识别率。为了验证所提出的算法对特征提取的有效性,选择最近邻分类器进行特征分类,最后通过在CASIA(B)步态库上实验。实验结果表明,文中提出的算法具有更高的识别率和识别速度。