A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single...In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be...In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.展开更多
A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
There is a growing technological development in intelligent teaching systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics th...There is a growing technological development in intelligent teaching systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that helps students understand the basics of linear programming using Linear Program Solver and Service for Solving Linear Programming Problems, through which students will be able to solve economic problems. It comes down to determining the minimum or maximum value of a linear function, which is called the objective function, according to pre-set limiting conditions expressed by linear equations and inequalities. The goal function and the limiting conditions represent a mathematical model of the observed problem. Working as a professor of mathematics in high school, I felt the need for one such work and dealing with the study of linear programming as an integral part of mathematics. There are a number of papers in this regard, but exclusively related to traditional ways of working, as stated in the introductory part of the paper. The center of work as well as the final part deals with the study of linear programming using programs that deal with this topic.展开更多
Selecting diets by quantitative techniques is becoming increasingly common. Linear programming is the most popular technique for the selection of least cost mixes of food to meet specific nutritional requirements for ...Selecting diets by quantitative techniques is becoming increasingly common. Linear programming is the most popular technique for the selection of least cost mixes of food to meet specific nutritional requirements for a particular group of persons for either general health or disease-related reason. Hypertension is a silent killer and its prevalence rate especially in the developing countries, which has been mostly associated to demographic, environmental and genetic factors, is becoming alarming. The DASH diet has been clinically proven to prevent and control hypertension. In this paper, a model that provides a Daily Optimal (minimum cost) DASH Diet plan for people with hypertension is formulated. The objective is to obtain daily minimum cost diet plans that satisfy the DASH Diets’ nutrients Tolerable Upper and Lower Intake for different daily Calorie Levels. The formulated DASH diet model was further illustrated using real data set with food samples gotten from the DASH eating plan chart. A DASH diet model for a hypertensive person with a 2000-daily-caloric need was formulated and its optimal diet plan for a day obtained with a total cost of 944.41 Naira. Optimal diet plans for other recommended daily calorie levels were also obtained.展开更多
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
基金Supported by the Natural Science Foundation of Henan Province(0511012000 0511013600) Supported by the Science Foundation for Pure Research of Natural Science of the Education Department of Henan Province(200512950001)
文摘In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
文摘There is a growing technological development in intelligent teaching systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that helps students understand the basics of linear programming using Linear Program Solver and Service for Solving Linear Programming Problems, through which students will be able to solve economic problems. It comes down to determining the minimum or maximum value of a linear function, which is called the objective function, according to pre-set limiting conditions expressed by linear equations and inequalities. The goal function and the limiting conditions represent a mathematical model of the observed problem. Working as a professor of mathematics in high school, I felt the need for one such work and dealing with the study of linear programming as an integral part of mathematics. There are a number of papers in this regard, but exclusively related to traditional ways of working, as stated in the introductory part of the paper. The center of work as well as the final part deals with the study of linear programming using programs that deal with this topic.
文摘Selecting diets by quantitative techniques is becoming increasingly common. Linear programming is the most popular technique for the selection of least cost mixes of food to meet specific nutritional requirements for a particular group of persons for either general health or disease-related reason. Hypertension is a silent killer and its prevalence rate especially in the developing countries, which has been mostly associated to demographic, environmental and genetic factors, is becoming alarming. The DASH diet has been clinically proven to prevent and control hypertension. In this paper, a model that provides a Daily Optimal (minimum cost) DASH Diet plan for people with hypertension is formulated. The objective is to obtain daily minimum cost diet plans that satisfy the DASH Diets’ nutrients Tolerable Upper and Lower Intake for different daily Calorie Levels. The formulated DASH diet model was further illustrated using real data set with food samples gotten from the DASH eating plan chart. A DASH diet model for a hypertensive person with a 2000-daily-caloric need was formulated and its optimal diet plan for a day obtained with a total cost of 944.41 Naira. Optimal diet plans for other recommended daily calorie levels were also obtained.