As India is a world class producer of sugarcane,sugar beet,other tubers like potato and vegetables with starch,cashew and badam,castor oil and soybean,the quantum of bio resins and bio plastics that can be produced fr...As India is a world class producer of sugarcane,sugar beet,other tubers like potato and vegetables with starch,cashew and badam,castor oil and soybean,the quantum of bio resins and bio plastics that can be produced from these conventional,organic and genetically modified plants is immense.As on date,advanced and state of the art plastics and composites are being used in many applications as there is no incentive for farmers to produce plants and vegetables for the plastics and resins market exclusively.The use of advanced composites in varied applications escalates costs and shifts the material consumption that would deplete the natural resources,through excessive usage at one end and lack of demand for natural resources at the other end as bio derived composites become under-utilized.This review paper attempts to project the actual possibilities of the bio resin and bio plastic market in this country and provides the knowhow for the production of bio-phenolic cashew nut shell resin which are more than a substitute for the synthetically produced epoxies.Their true potentialities in composites product applications involving structural,thermal,electronic,pharmaceutical and petroleum engineering markets is discussed in this paper.A novel working model with an economically feasible option is also provided for those concerned about their safe disposal,recycling,reuse and conversion into useable fuel with virtually no impact to the environment.Cashew Nut Shell Liquid(CNSL)is an abundant natural source for synthesizing phenolic compounds.The excellent monomer,Cardanol is isolated from CNSL for polymer production.These are polymerized with aldehydes and acids at a particular mole fraction in the presence of catalysts like alkalis to convert into rigid resins.Differential Scanning Calorimetric(DSC)and Thermo Gravimetric Analysis(TGA)were studied for the thermal characterization of the synthesized CNSL Resins.Characterization of the synthesized resins was also carried out with respect to the evaluated mechanical properties such as hardness,strength,elastic modulus and fracture toughness.The synthesized CNSL resins yielded many interesting compositions with varied properties increasing the possibilities of various resin formulations which could be used for composites applications in vibrational damping.The electronic packaging applications of nano-composites with high dielectric strength produced with the CNSL matrix are also highlighted.展开更多
Basic properties of a silica-based octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) extraction resin (CMPO/SiO2-P) was investigated.Adsorption behavior for some rare earth elements (RE) which are con...Basic properties of a silica-based octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) extraction resin (CMPO/SiO2-P) was investigated.Adsorption behavior for some rare earth elements (RE) which are constituents of high level liquid waste (HLLW) and the long-term stability of the extraction resin in nitric acid solution were examined.The CMPO extraction resin was significantly stable in 3 mol·L?1 HNO3 solution at 50oC.Furthermore,the RE(III) were efficiently separated from non-adsorptive fission product (FP) elements such as Sr(II) in a column experiment using a highly nitric acid solution.The separation behaviors of the elements are considered to result from the difference in their adsorption and elution selectivity based on the complex formation with CMPO.There was no strong dependency of RE(III) separation efficiency on feed solution flow rate.Only from the perspectives of the acid-resistant behavior of CMPO extraction resin and the elution kinetics for the metal ions with the extraction resin,the CMPO extraction resin can be used in the modified MAREC process for HLLW partitioning.展开更多
Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this stu...Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this study,a bio-based liquid crystal epoxy resin(THMT-E P)with an s-triazine ring structure was utilized to modify a petroleum-based bisphenol A epoxy resin(E51)with 4,4'-diaminodiphenylsulfone(DDS)as a curing agent,and the blended systems were evaluated for their thermal stability,mechanical properties,and flame retardancy.The results showed that the impact strength of the blended system initially increased and then decreased with the increase in THMT-EP content,and it reached the a maximum value of 26.5 kJ/m^(2)when the THMT-EP content was 5%,which was 31.2%higher than that of E51/DDS.Notably,the flexural strength,modulus,and glass transition tem perature of the blended system were all simultaneously improved with the addition of THMT-EP.At the same time,the addition of THMT-EP enhanced the flame retardancy of the system by increasing the char yield at 700℃and decreasing the peak heat release rate and total heat release rate.This work paves the way for a more sustainable improvement in the comprehensive performance of epoxy resin.展开更多
This work was aimed at synthesizing Cashew Nut Shell Liquid (CNSL) based polymer particles for adsorption of Cr(III) ions from aqueous solutions. Natural CNSL was used as a starting material in synthesizing amino pent...This work was aimed at synthesizing Cashew Nut Shell Liquid (CNSL) based polymer particles for adsorption of Cr(III) ions from aqueous solutions. Natural CNSL was used as a starting material in synthesizing amino pentadecylphenols (APP). This was achieved through isolating anacardic acid from the CNSL via calcium anacardate procedure, followed by hydrogenation of the alkenyl side chains, and subsequently decarboxylating the product to form 3-pentadecylphenol, which was then nitrated and reduced to a mixture of APP. APP were co-polymerized with ethylene glycol dimethacrylate (EGDMA) to form poly(APP-co-EGDMA) particles. The chemical structures of the synthesized compounds were confirmed by Fourier Transform IR and 1H-NMR. The co-polymer particles were characterized by Scanning Electron Microscopy (SEM) to establish their morphological properties. The prepared co-polymer particles were found to have-NH loading of 46 mmol/g and a maximum adsorption capacity for Cr(III) ions of 16 mg per g of dry polymer particles. The spent polymer particles were recoverable and reusable.展开更多
Epoxy resins toughened with carboxyl-terminated butadieneacrylonitrile copolymers (CTBN) are two-phase thermosets. The network of the in situ formed rubber particles depends upon the curing mechanism of the resin. Whe...Epoxy resins toughened with carboxyl-terminated butadieneacrylonitrile copolymers (CTBN) are two-phase thermosets. The network of the in situ formed rubber particles depends upon the curing mechanism of the resin. When a primary polyamine such as triethylene tetramine was used as curing agent, the network of the rubber phase was quite incomplete, whereas a perfect rubber network was formed with 2-ethyl-4-methyl imidazole as the curing agent.展开更多
文摘As India is a world class producer of sugarcane,sugar beet,other tubers like potato and vegetables with starch,cashew and badam,castor oil and soybean,the quantum of bio resins and bio plastics that can be produced from these conventional,organic and genetically modified plants is immense.As on date,advanced and state of the art plastics and composites are being used in many applications as there is no incentive for farmers to produce plants and vegetables for the plastics and resins market exclusively.The use of advanced composites in varied applications escalates costs and shifts the material consumption that would deplete the natural resources,through excessive usage at one end and lack of demand for natural resources at the other end as bio derived composites become under-utilized.This review paper attempts to project the actual possibilities of the bio resin and bio plastic market in this country and provides the knowhow for the production of bio-phenolic cashew nut shell resin which are more than a substitute for the synthetically produced epoxies.Their true potentialities in composites product applications involving structural,thermal,electronic,pharmaceutical and petroleum engineering markets is discussed in this paper.A novel working model with an economically feasible option is also provided for those concerned about their safe disposal,recycling,reuse and conversion into useable fuel with virtually no impact to the environment.Cashew Nut Shell Liquid(CNSL)is an abundant natural source for synthesizing phenolic compounds.The excellent monomer,Cardanol is isolated from CNSL for polymer production.These are polymerized with aldehydes and acids at a particular mole fraction in the presence of catalysts like alkalis to convert into rigid resins.Differential Scanning Calorimetric(DSC)and Thermo Gravimetric Analysis(TGA)were studied for the thermal characterization of the synthesized CNSL Resins.Characterization of the synthesized resins was also carried out with respect to the evaluated mechanical properties such as hardness,strength,elastic modulus and fracture toughness.The synthesized CNSL resins yielded many interesting compositions with varied properties increasing the possibilities of various resin formulations which could be used for composites applications in vibrational damping.The electronic packaging applications of nano-composites with high dielectric strength produced with the CNSL matrix are also highlighted.
文摘Basic properties of a silica-based octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) extraction resin (CMPO/SiO2-P) was investigated.Adsorption behavior for some rare earth elements (RE) which are constituents of high level liquid waste (HLLW) and the long-term stability of the extraction resin in nitric acid solution were examined.The CMPO extraction resin was significantly stable in 3 mol·L?1 HNO3 solution at 50oC.Furthermore,the RE(III) were efficiently separated from non-adsorptive fission product (FP) elements such as Sr(II) in a column experiment using a highly nitric acid solution.The separation behaviors of the elements are considered to result from the difference in their adsorption and elution selectivity based on the complex formation with CMPO.There was no strong dependency of RE(III) separation efficiency on feed solution flow rate.Only from the perspectives of the acid-resistant behavior of CMPO extraction resin and the elution kinetics for the metal ions with the extraction resin,the CMPO extraction resin can be used in the modified MAREC process for HLLW partitioning.
基金financially supported by the National Natural Science Foundation of China(Nos.52073038 and 51873027)the Fundamental Research Funds for the Central Universities(No.DUT22LAB605)。
文摘Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this study,a bio-based liquid crystal epoxy resin(THMT-E P)with an s-triazine ring structure was utilized to modify a petroleum-based bisphenol A epoxy resin(E51)with 4,4'-diaminodiphenylsulfone(DDS)as a curing agent,and the blended systems were evaluated for their thermal stability,mechanical properties,and flame retardancy.The results showed that the impact strength of the blended system initially increased and then decreased with the increase in THMT-EP content,and it reached the a maximum value of 26.5 kJ/m^(2)when the THMT-EP content was 5%,which was 31.2%higher than that of E51/DDS.Notably,the flexural strength,modulus,and glass transition tem perature of the blended system were all simultaneously improved with the addition of THMT-EP.At the same time,the addition of THMT-EP enhanced the flame retardancy of the system by increasing the char yield at 700℃and decreasing the peak heat release rate and total heat release rate.This work paves the way for a more sustainable improvement in the comprehensive performance of epoxy resin.
文摘This work was aimed at synthesizing Cashew Nut Shell Liquid (CNSL) based polymer particles for adsorption of Cr(III) ions from aqueous solutions. Natural CNSL was used as a starting material in synthesizing amino pentadecylphenols (APP). This was achieved through isolating anacardic acid from the CNSL via calcium anacardate procedure, followed by hydrogenation of the alkenyl side chains, and subsequently decarboxylating the product to form 3-pentadecylphenol, which was then nitrated and reduced to a mixture of APP. APP were co-polymerized with ethylene glycol dimethacrylate (EGDMA) to form poly(APP-co-EGDMA) particles. The chemical structures of the synthesized compounds were confirmed by Fourier Transform IR and 1H-NMR. The co-polymer particles were characterized by Scanning Electron Microscopy (SEM) to establish their morphological properties. The prepared co-polymer particles were found to have-NH loading of 46 mmol/g and a maximum adsorption capacity for Cr(III) ions of 16 mg per g of dry polymer particles. The spent polymer particles were recoverable and reusable.
文摘Epoxy resins toughened with carboxyl-terminated butadieneacrylonitrile copolymers (CTBN) are two-phase thermosets. The network of the in situ formed rubber particles depends upon the curing mechanism of the resin. When a primary polyamine such as triethylene tetramine was used as curing agent, the network of the rubber phase was quite incomplete, whereas a perfect rubber network was formed with 2-ethyl-4-methyl imidazole as the curing agent.