期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
All-Solid-State Thin-Film Lithium-Sulfur Batteries 被引量:8
1
作者 Renming Deng Bingyuan Ke +5 位作者 Yonghui Xie Shoulin Cheng Congcong Zhang Hong Zhang Bingan Lu Xinghui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期326-338,共13页
Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Th... Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice.However,the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into allsolid-state thin-film batteries,leading to inexperience in fabricating all-solid-state thin-film Li-S batteries(TFLSBs).Herein,for the first time,TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S(VGsLi2S)composite thin-film cathode,lithium-phosphorous-oxynitride(LiPON)thin-film solid electrolyte,and Li metal anode.Fundamentally eliminating Lipolysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an“unlimited Li”reservoir,which exhibits excellent longterm cycling stability with a capacity retention of 81%for 3,000 cycles,and an exceptional high temperature tolerance up to 60℃.More impressively,VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%.Collectively,this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries. 展开更多
关键词 All-solid-state thin-film batteries li-s batteries Vertical graphene nanosheets lithium phosphorous oxynitride li2s
下载PDF
Boosting Lean Electrolyte Lithium-Sulfur Battery Performance with Transition Metals: A Comprehensive Review 被引量:5
2
作者 Hui Pan Zhibin Cheng +8 位作者 Zhenyu Zhou Sijie Xie Wei Zhang Ning Han Wei Guo Jan Fransaer Jiangshui Luo Andreu Cabot Michael Wübbenhorst 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期53-100,共48页
Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyze... Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries. 展开更多
关键词 Transition metals Lean electrolyte sulfur reduction reactions lis batteries
下载PDF
Dual-Functional Organotelluride Additive for Highly Efficient Sulfur Redox Kinetics and Lithium Regulation in Lithium–Sulfur Batteries 被引量:2
3
作者 Wei Zhang Fenfen Ma +5 位作者 Qiang Wu Ziqi Zeng Wei Zhong Shijie Cheng Xin Chen Jia Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期126-133,共8页
High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle ... High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle effect,sluggish sulfur kinetics,and uncontrollable dendritic Li growth.Herein,a dual-functional electrolyte additive,diphenyl ditelluride(DPDTe)is reported for Li–S battery.For sulfur cathodes,DPDTe works as a redox mediator to accelerate redox kinetics of sulfur,in which Te radical-mediated catalytic cycle at the solid–liquid interface contributes significantly to the whole process.For lithium anodes,DPDTe can react with lithium metal to form a smooth and stable organic–inorganic hybrid solid-electrolyte interphase(SEI),enabling homogeneous lithium deposition for suppressing dendrite growth.Consequently,the Li–S battery with DPDTe exhibits remarkable cycling stability and superb rate capability,with a high capacity up to 1227.3 mAh g^(-1)and stable cycling over 300 cycles.Moreover,a Li–S pouch cell with DPDTe is evaluated as the proof of concept.This work demonstrates that organotelluride compounds can be used as functional electrolyte additives and offers new insights and opportunities for practical Li–S batteries. 展开更多
关键词 electrolyte additive li anode li2 s deposition lis battery sulfur kinetics
下载PDF
LiTFSI salt concentration effect to digest lithium polysulfides for high-loading sulfur electrodes 被引量:1
4
作者 Jin-Kwang Song Moonsoo Kim +1 位作者 Seongbae Park Young-Jun Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期574-581,I0015,共9页
Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trode... Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trodes and low electrolyte/sulfur(E/S)ratios.The sluggish reaction in the low E/S ratio induces poor LiPS solubility and unstable Li_(2)S electrodeposition,resulting in limited sulfur utilization,especially under high-loading sulfur electrode.In this study,we report on salt concentration effects that improve sulfur utilization with a high-loading cathode(6 mgs ulfurcm^(-2)),a high sulfur content(80 wt%)and a low E/S ratio(5 m L gs ulfur^(-1)).On the basis of the rapid LiPS dissolving in a low concentration electrolyte,we estab-lished that the quantity of Li_(2)S electrodeposition from a high Li+diffusion coefficient,referring to the reduction of LiPS precipitation,was significantly enhanced by a faster kinetic.These results demonstrate the importance of kinetic factors for the rate capability and cycle life stability of Li-S battery electrolytes through high Li_(2)S deposition under high-loading sulfur electrode. 展开更多
关键词 lithium-sulfur battery Electrolyte concentration li2s deposition High-loading sulfur electrode
下载PDF
An ultrathin and continuous Li_4Ti_5O_(12) coated carbon nanofiber interlayer for high rate lithium sulfur battery 被引量:4
5
作者 Decheng An Lu Shen +5 位作者 Danni Lei Lehong Wang Heng Ye Baohua Li Feiyu Kang Yan-Bing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期19-26,共8页
Severe capacity fading and poor high rate performance of lithium sulfur(Li–S) battery caused by "shuttle effect" and low conductivity of sulfur hampers its further developments and applications. Li_4Ti_5O_(... Severe capacity fading and poor high rate performance of lithium sulfur(Li–S) battery caused by "shuttle effect" and low conductivity of sulfur hampers its further developments and applications. Li_4Ti_5O_(12) (LTO)possesses high lithium ion conductivity, and it is also can be used as an active adsorbent for polysulfide. Herein, fine LTO particle coated carbon nanofibers(CNF) were prepared and a conductive network both for electron and lithium ion was built, which can greatly promote the electrochemical conversion of polysulfide and improve the rate performance of Li–S batteries. Meanwhile, a quantity of adsorption sites is constructed by defects of the surface of LTO-CNF membrane to effectively immobilize polysulfide. The multifunctional LTO-CNF interlayer could impede the shuttle effect and enhance comprehensive electrochemical performance of Li–S batteries, especially high rate performance. With such LTO-CNF interlayer,the Li–S battery presents a specific capacity of 641.9 mAh/g at 5 C rate. After 400 cycles at 1 C, a capacity of 618.0 mAh/g is retained. This work provides a feasible strategy to achieve high performance of Li–S battery for practical utilization. 展开更多
关键词 lithium sulfur batteries li4TI5O12 (LTO) INTERLAYER POLYsULFIDE ADsORBENT POLYsULFIDE conversion
下载PDF
Three-dimensionally interconnected Co9S8/MWCNTs composite cathode host for lithium–sulfur batteries 被引量:3
6
作者 Shengyu Zhao Xiaohui Tian +2 位作者 Yingke Zhou Ben Ma Angulakshmi Natarajan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期22-29,I0002,共9页
Several challenging issues,such as the poor conductivity of sulfur,shuttle effects,large volume change of cathode,and the dendritic lithium in anode,have led to the low utilization of sulfur and hampered the commercia... Several challenging issues,such as the poor conductivity of sulfur,shuttle effects,large volume change of cathode,and the dendritic lithium in anode,have led to the low utilization of sulfur and hampered the commercialization of lithium–sulfur batteries.In this study,a novel three-dimensionally interconnected network structure comprising Co9 S8 and multiwalled carbon nanotubes(MWCNTs)was synthesized by a solvothermal route and used as the sulfur host.The assembled batteries delivered a specific capacity of1154 m Ah g-1 at 0.1 C,and the retention was 64%after 400 cycles at 0.5 C.The polar and catalytic Co9 S8 nanoparticles have a strong adsorbent effect for polysulfide,which can effectively reduce the shuttling effect.Meanwhile,the three-dimensionally interconnected CNT networks improve the overall conductivity and increase the contact with the electrolyte,thus enhancing the transport of electrons and Li ions.Polysulfide adsorption is greatly increased with the synergistic effect of polar Co9 S8 and MWCNTs in the three-dimensionally interconnected composites,which contributes to their promising performance for the lithium–sulfur batteries. 展开更多
关键词 Three-dimensional network structure MWCNTs Polar and catalytic Co9s8 lithiumsulfur batteries
下载PDF
CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life 被引量:7
7
作者 Qiang Zhang Ning Huang +3 位作者 Zhen Huang Liangting Cai Jinghua Wu Xiayin Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期151-155,I0006,共6页
The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite fo... The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur batteries have been proposed to solve the shuttle effect and prevent short circuits.However,solid-solid contacts between the electrodes and the electrolyte increase the interface resistance and stress/strain,which could result in the limited electrochemical performances.In this work,the cathode of all-solid-state lithium-sulfur batteries is prepared by depositing sulfur on the surface of the carbon nanotubes(CNTs@S)and further mixing with Li10GeP2S12 electrolyte and acetylene black agents.At 60℃,CNTs@S electrode exhibits superior electrochemical performance,delivering the reversible discharge capacities of 1193.3,959.5,813.1,569.6 and 395.5 mAhg^-1 at the rate of 0.1,0.5,1,2 and 5 C,respectively.Moreover,the CNTs@S is able to demonstrate superior high-rate capability of 660.3 mAhg^-1 and cycling stability of 400 cycles at a high rate of 1.0 C.Such uniform distribution of the CNTs,S and Li10GeP2S12 electrolyte increase the electronic and ionic conductivity between the cathode and the electrolyte hence improves the rate performance and capacity retention. 展开更多
关键词 CNTs@s composite All-solid-state lithium-sulfur battery Electronic conduction network Interfacial contact Ultralong cycle life
下载PDF
Three dimensional porous frameworks for lithium dendrite suppression 被引量:15
8
作者 Shuyan Ni Shuangshuang Tan +1 位作者 Qinyou An Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第5期73-89,共17页
Lithium metal is a promising anode material owing to its very low electrochemical potential and ultrahigh specific capacity.However,the growth of lithium dendrites could result in a short lifespan,low coulombic effici... Lithium metal is a promising anode material owing to its very low electrochemical potential and ultrahigh specific capacity.However,the growth of lithium dendrites could result in a short lifespan,low coulombic efficiency,and potential safety hazards during the progress of lithium plating/stripping.These factors drastically hinder its application in lithium metal batteries.This review focuses on the use of three dimensional(3D)porous host frameworks to improve Li plating/stripping behaviors,accommodate the change in volume,and suppress or block lithium dendrite growth.Various 3D porous frameworks,including the conductive carbon-based,metal-based,and lithiophilic inorganic-compound frameworks are introduced and summarized in detail.The particular functions,relative developments,and optimized strategies of various 3D porous frameworks for lithium deposition/dissolution behaviors are discussed.Moreover,the challenges and promising developments in the field of Li metal anodes will be discussed at the end of this review. 展开更多
关键词 lithium metal battery 3D porous frameworks lithium DENDRITE lithium sulfur BATTERIEs lithium oxygen BATTERIEs li plating/stripping
下载PDF
Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries 被引量:20
9
作者 Xiaodong Hong Rui Wang +3 位作者 Yue Liu Jiawei Fu Ji Liang Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期144-168,共25页
Owing to their low cost,high energy densities,and superior performance compared with that of Li-ion batteries,Li–S batteries have been recognized as very promising next-generation batteries.However,the commercializat... Owing to their low cost,high energy densities,and superior performance compared with that of Li-ion batteries,Li–S batteries have been recognized as very promising next-generation batteries.However,the commercialization of Li–S batteries has been hindered by the insulation of sulfur,significant volume expansion,shuttling of dissolved lithium polysulfides(Li PSs),and more importantly,sluggish conversion of polysulfide intermediates.To overcome these problems,a state-of-the-art strategy is to use sulfur host materials that feature chemical adsorption and electrocatalytic capabilities for Li PS species.In this review,we comprehensively illustrate the latest progress on the rational design and controllable fabrication of materials with chemical adsorbing and binding capabilities for Li PSs and electrocatalytic activities that allow them to accelerate the conversion of Li PSs for Li–S batteries.Moreover,the current essential challenges encountered when designing these materials are summarized,and possible solutions are proposed.We hope that this review could provide some strategies and theoretical guidance for developing novel chemical anchoring and electrocatalytic materials for high-performance Li–S batteries. 展开更多
关键词 Chemical adsorption ELECTROCATALYsIs lis BATTERIEs lithium POLYsULFIDEs sHUTTLE effect
下载PDF
Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries 被引量:8
10
作者 Zhiyu Wang Nan Zhang +3 位作者 Mingliang Yu Junshan Liu Song Wang Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期183-191,共9页
Use of metallic Li anode raises serious concerns on the safety and operational performance of Li-S batteries due to uncontrolled hazard of Li dendrite formation, which is difficultly eliminated as long as the metallic... Use of metallic Li anode raises serious concerns on the safety and operational performance of Li-S batteries due to uncontrolled hazard of Li dendrite formation, which is difficultly eliminated as long as the metallic Li exists in the cells. Pairing lithium sulfide (Li2S) cathode with currently available metallic Lifree high-capacity anodes offers an alternative solution to this challenge. However, the performance of Li2S cathode is primarily restricted by high activation barrier upon initial charge, low active mass utilization and sluggish redox kinetics. Herein, a MXene-induced multifunctional collaborative interface is proposed to afford superb activity towards redox solid-liquid/liquid-liquid phase transformation, strong chemisorption, high conductivity and fast ionic/charge transport in high Li2S loading cathode. Applying collaborative interface effectively reduces initial voltage barrier of Li2S activation and regulates the kinetic behavior of redox polysulfide conversion. Therefore, stable operation of additive-free Li2S cathode with high areal capacities at high Li2S loading up to 9 mg cm^-2 can be achieved with less sacrifice of high capacity and rate capability in Li-S batteries. Rechargeable metallic Li-free batteries are successfully constructed by pairing this high-performance Li2S cathode with high-capacity metal oxide anodes, which delivers superior energy density to current Li-ion batteries. 展开更多
关键词 lithium sULFIDE HIGH-CAPACITY CATHODE INTERFACE MXene li-s batteries
下载PDF
Ion shielding functional separator using halloysite containing a negative functional moiety for stability improvement of Li–S batteries 被引量:3
11
作者 Yong Min Kwon Jihoon Kim +1 位作者 Kuk Young Cho Sukeun Yoon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期334-340,共7页
Lithium–sulfur batteries are one of the attractive next-generation energy storage systems owing to theienvironmental friendliness,low cost,and high specific energy densities.However,the low electrical conductivity of... Lithium–sulfur batteries are one of the attractive next-generation energy storage systems owing to theienvironmental friendliness,low cost,and high specific energy densities.However,the low electrical conductivity of sulfur,shuttling of soluble intermediate polysulfides between electrodes,and low capacitretention have hampered their commercial use.To address these issues,we use a halloysitemodulated(H-M)separator in a lithium–sulfur battery to mitigate the shuttling problem.The H-M separator acts as a mutual Coulombic repulsion in lithium-sulfur batteries,thereby selectively permitting Lions and efficiently suppressing the transfer of undesired lithium polysulfides to the Li anode sideMoreover,the use of halloysite switches the surface of the separator from hydrophobic to hydrophilicconsequently improving the electrolyte wettability and adhesion between the separator and cathodeWhen sulfur-multi-walled carbon nanotube(S-MWCNT)composites are used as cathode active materialsa lithium–sulfur battery with an H-M separator exhibits first discharge and charge capacities of 1587 an1527 m Ah g-1,respectively.Moreover,there is a consistent capacity retention up to 100 cyclesAccordingly,our approach demonstrates an economical and easily accessible strategy for commercialization of lithium–sulfur batteries. 展开更多
关键词 lis batteries HALLOYsITE Ion shielding Negative functional moiety lithium polysulfides
下载PDF
ZnS coating of cathode facilitates lean‐electrolyte Li‐S batteries 被引量:6
12
作者 Woochul Shin Jun Lu Xiulei Ji 《Carbon Energy》 CAS 2019年第2期165-172,共8页
Tremendous effort has been devoted to lithium‐sulfur batteries,where flooded electrolytes have been employed ubiquitously.The use of lean electrolytes albeit indispensable for practical applications often causes low ... Tremendous effort has been devoted to lithium‐sulfur batteries,where flooded electrolytes have been employed ubiquitously.The use of lean electrolytes albeit indispensable for practical applications often causes low capacity and fast capacity fading of the sulfur cathode;thus,the electrolyte/sulfur active mass ratios below 5μL/mg have been rarely reported.Herein,we demonstrate that ZnS coating transforms sulfur cathode materials electrolyte‐philic,which tremendously promotes the performance in lean electrolytes.The ZnS‐coated Li2S@graphene cathode delivers an initial discharge capacity of 944mAh/g at an E/S ratio of 2μL/mg at the active mass loading of 5.0 mg Li2S/cm^2,corresponding to an impressive specific energy of 500Wh/kg based on the mass of cathode,electrolyte,and the assumed minimal mass of lithium metal anode.Density functional theory calculations reveal strong binding between ZnS crystals and electrolyte solvent molecules,explaining the better wetting properties.We also demonstrate the reversible cycling of a hybrid cathode of ZnS‐coated Li2S@graphene mixed with VS2 as an additive at an E/AM(active mass)ratio of 1.1μL/mg,equivalent to the specific energy of 432 Wh/kg on the basis of the mass of electrodes and electrolyte. 展开更多
关键词 electrolyte‐philic lean electrolyte li2s cathode lithiumsulfur battery Zns coating
下载PDF
锂硫电池用LiPFSD/PVDF/SiO_2复合膜的研究 被引量:2
13
作者 魏延超 洪晓斌 +2 位作者 许静 王丹琴 唐彪 《电源技术》 CAS 北大核心 2019年第1期16-19,共4页
锂硫电池正极活性物质理论比容量高达1 675 m Ah/g,单质硫具有环境友好,资源丰富,价格低廉等优点,因此,锂硫电池最有希望成为下一代二次电池的有力竞争者。硝酸锂是抑制锂硫电池飞梭的常用添加剂,会随着电池循环不断被消耗。不断消耗的... 锂硫电池正极活性物质理论比容量高达1 675 m Ah/g,单质硫具有环境友好,资源丰富,价格低廉等优点,因此,锂硫电池最有希望成为下一代二次电池的有力竞争者。硝酸锂是抑制锂硫电池飞梭的常用添加剂,会随着电池循环不断被消耗。不断消耗的硝酸锂难以长期抑制硫负载量较高电池的飞梭。有研究表明锂离子选择透过性聚合物电解质膜能够有效抑制飞梭效应。将聚偏氟乙烯(PVDF)和SiO_2改性并与Celgard膜复合的全氟磺酸双氰胺锂(LiPFSD)单离子聚合物电解质膜应用于锂硫电池中,研究了电解液中无硝酸锂条件下,复合膜对电池性能的影响。膜的厚度为15μm,膜内添加20%PVDF和10%SiO_2,正极硫负载量3.5 mg/cm2的锂硫电池,其首次放电比容量为995 m Ah/g,0.1 C下50次循环后放电比容量为798 m Ah/g,库仑效率维持80%以上。 展开更多
关键词 锂硫电池 liPFsD聚合物电解质膜 锂离子选择透过性 飞梭效应抑制剂
下载PDF
Electrochemical deposition of Li_(2)S_(2)/Li_(2)S in aprotic Li–S batteries
14
作者 Zhifeng Yao Xiaozhong Fan Long Kong 《Particuology》 SCIE EI CAS CSCD 2024年第7期516-521,共6页
Lithium–sulfur(Li–S)batteries stand out the energy storage systems because of extremely high energy density(2600 W h Kg−1)and low-cost sulfur cathode.Unfortunately,the sluggish deposition from liquid Li polysulfides... Lithium–sulfur(Li–S)batteries stand out the energy storage systems because of extremely high energy density(2600 W h Kg−1)and low-cost sulfur cathode.Unfortunately,the sluggish deposition from liquid Li polysulfides(LiPSs)to solid Li2S leads to mild power density and short cycle life.Understanding and regulating Li_(2)S_(2)/Li2S deposition are conceived to be importance to deliver second-plateau capacity in acceptable kinetics,which has the potential to operation Li–S batteries under electrolyte-lean conditions.This perspective aims to summarize the proposed models that can describe the nucleation and propagation of three-dimensional Li_(2)S_(2)/Li2S,as well as affords critical views how electrolyte dictates LiPS conversion from liquid to solid.It hopes to encourage necessary scaffold strategies and electrolyte formulations to further improve energy density and life span of Li–S batteries. 展开更多
关键词 lithiumsulfur batteries ELECTROLYTE li_(2)s precipitation Characterization
原文传递
以硫化促进剂TMTD提高正极材料硫含量改善Li-S电池性能
15
作者 张海连 张心湄 聂丹 《化工新型材料》 CAS CSCD 北大核心 2020年第8期96-99,共4页
锂硫电池的正极材料研究是实际应用的关键,其中硫化碳正极材料由于其高容量保持率、超低自放电率和高安全性受到广泛关注。但该材料的突出问题是硫含量过低。利用硫化促进剂四甲基二硫代秋兰姆(TMTD)提升硫化聚丙烯腈(PAN-S)正极材料中... 锂硫电池的正极材料研究是实际应用的关键,其中硫化碳正极材料由于其高容量保持率、超低自放电率和高安全性受到广泛关注。但该材料的突出问题是硫含量过低。利用硫化促进剂四甲基二硫代秋兰姆(TMTD)提升硫化聚丙烯腈(PAN-S)正极材料中硫含量至34.09%。所构成的锂硫电池不仅保持本身库仑效率高的特点,且放电比容量高出对照组硫化碳电极280mAh/g左右,循环稳定性增加,为硫化促进剂提高硫化聚丙烯腈材料硫含量的方法提供了有力的佐证。 展开更多
关键词 锂硫电池 硫化碳正极 硫含量 四甲基二硫代秋兰姆
原文传递
rGO-S-CPEs复合正极的制备及其全固态锂硫电池的电化学性能
16
作者 张港 张亦罗 +1 位作者 曹诗雨 陈斐 《电源技术》 CAS 北大核心 2023年第10期1259-1262,共4页
聚合物基复合电解质(CPE)应用于全基固态锂硫电池在保证高能量密度的同时,改善了电解质与电极之间的界面接触,具有更为广阔的应用前景。但硫正极固有的绝缘性会导致较低的电子/离子传输速率,通常选用高导电性的碳材料和高离子电导率的... 聚合物基复合电解质(CPE)应用于全基固态锂硫电池在保证高能量密度的同时,改善了电解质与电极之间的界面接触,具有更为广阔的应用前景。但硫正极固有的绝缘性会导致较低的电子/离子传输速率,通常选用高导电性的碳材料和高离子电导率的电解质材料来改善复合硫正极的电子/离子传输速率。制备了高离子电导率的聚合物基聚氧化乙烯(PEO)-双三氟甲磺酰亚胺锂(LiTFSI)-锆酸镧锂(LLZO)复合电解质,在20和60℃下离子电导率分别为1.16×10-4和7.26×10^(-4)S/cm,同时将其与硫-还原氧化石墨烯制备rGO-S-CPEs复合硫正极,在改善了正极中离子传输速率的同时,取代了粘结剂的作用。探究了正极材料中不同含量的复合电解质对电池性能的影响。测试结果表明,当硫正极中复合电解质含量为40%(质量分数)时,全固态锂硫电池的电化学性能最佳,在0.2 C、45℃下,首次充放电比容量为923 mAh/g,50次循环后比容量为653 mAh/g。 展开更多
关键词 全固态锂硫电池 PEO-liTFsI-LLZO复合电解质 复合硫正极 电子/离子传输速率
下载PDF
Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batterie 被引量:9
17
作者 Wenzhi Tian Baojuan Xi +4 位作者 Yu Gu Qiang Fu Zhenyu Feng Jinkui Feng Shenglin Xiong 《Nano Research》 SCIE EI CAS CSCD 2020年第10期2673-2682,共10页
Lithium–sulfur batteries have been attracting considerable research attention due to their high energy densities and low costs. However, one of their main challenges is the undesired shuttling of polysulfides, causin... Lithium–sulfur batteries have been attracting considerable research attention due to their high energy densities and low costs. However, one of their main challenges is the undesired shuttling of polysulfides, causing rapid capacity degradation. Herein, we report the first example of sulfiphilic VSe2 ultrafine nanocrystals immobilized on nitrogen-doped graphene to modify the battery separator for alleviating the shuttling problem. VSe2 nanocrystals provide numerous active sites for chemisorption of polysulfides as well as benefit the nucleation and growth of Li2S. Furthermore, the kinetic reactions are accelerated which is confirmed by higher exchange current density and higher lithium ion diffusion coefficient. And the first-principles calculations further show that the exposed sulfiphilic planes of VSe2 boost the redox of Li2S. When used as separators within the lithium sulfur batteries, the cell indicates greatly enhanced electrochemical performances with excellent long cycling stability and exceptional rate capability up to 8 C. Moreover, it delivers a higher areal capacity of 4.04 mAh·cm^−2 as well as superior cycling stability with sulfur areal loading up to 6.1 mg·cm^−2. The present strategy can encourage us in engineering novel multifunctional separators for energy-storage devices. 展开更多
关键词 sulfiphilic Vse2 lithiumsulfur batteries nucleation and growth of li2s polysulfide electrocatalysis shuttle effect
原文传递
常温下真空浸渍制备的LMC/S复合材料 被引量:10
18
作者 赵春荣 王维坤 +1 位作者 刘荣江 杨裕生 《电池》 CAS CSCD 北大核心 2010年第1期6-9,共4页
在常温下,采用真空浸渍的方法,将单质硫(S)填充在大介孔炭(LMC)的孔中,制备出LMC/S复合材料。用SEM、XRD和氮吸附等方法对复合材料进行了分析,用恒流放电、循环伏安等方法对复合材料的电化学性能进行了测试。填充在LMC中的硫高度分散,... 在常温下,采用真空浸渍的方法,将单质硫(S)填充在大介孔炭(LMC)的孔中,制备出LMC/S复合材料。用SEM、XRD和氮吸附等方法对复合材料进行了分析,用恒流放电、循环伏安等方法对复合材料的电化学性能进行了测试。填充在LMC中的硫高度分散,复合材料的循环性能和硫的利用率都较高。当电流密度为0.4 mA/cm2时,LMC/S电极中硫的首次放电比容量达1 215.5 mAh/g,第50次循环的可逆比容量仍有535.3 mAh/g。 展开更多
关键词 真空浸渍法 大介孔炭(LMC) LMC/s复合材料 锂/硫电池
下载PDF
含硫添加剂对8μm锂电铜箔性能的影响研究 被引量:1
19
作者 李谋翠 樊斌锋 +2 位作者 赵玉龙 王庆福 王绪军 《矿冶工程》 CAS 北大核心 2024年第2期188-191,共4页
采用线性扫描伏安法和循环伏安剥离法研究了Cu^(2+)、H_(2)SO_(4)、Cl^(-)浓度分别为85 g/L、100 g/L、2 mg/L的电解液中添加光亮剂聚二硫二丙烷磺酸钠(SPS)和3-巯基-1-丙磺酸钠(MPS)对铜电沉积的影响,并研究了SPS和MPS对锂电铜箔抗拉... 采用线性扫描伏安法和循环伏安剥离法研究了Cu^(2+)、H_(2)SO_(4)、Cl^(-)浓度分别为85 g/L、100 g/L、2 mg/L的电解液中添加光亮剂聚二硫二丙烷磺酸钠(SPS)和3-巯基-1-丙磺酸钠(MPS)对铜电沉积的影响,并研究了SPS和MPS对锂电铜箔抗拉强度、延伸率、光泽度及粗糙度的影响。结果表明,SPS和MPS对铜电沉积具有促进作用,且SPS的促进作用更强;SPS和MPS分别与胶原蛋白和羟乙基纤维素复配后,对铜电沉积的促进作用减弱;SPS更有利于提高铜箔抗拉强度,MPS更有利于提升铜箔延伸率;SPS浓度1.0 mg/L、MPS浓度1.5 mg/L时,铜箔毛面光泽度和粗糙度均较好,铜箔表面平整且致密。 展开更多
关键词 锂电铜箔 电解铜箔 含硫添加剂 胶原蛋白 光泽度 粗糙度 光亮剂 锂离子电池
下载PDF
多孔氮氟共掺杂碳气凝胶的制备及其在锂硫电池中的应用
20
作者 徐伟君 胡金龙 +2 位作者 余德馨 傅儒生 张灵志 《新能源进展》 CSCD 北大核心 2024年第3期294-302,共9页
锂硫电池以其超高的理论能量密度,已成为最具发展潜力的新一代电化学储能技术,但硫正极存在电导率低、体积膨胀、多硫化物穿梭效应等技术瓶颈问题,制约了其实际应用。通过甲醛和3-氨丙基三乙氧基硅烷的醛胺缩合和溶胶-凝胶化反应合成了... 锂硫电池以其超高的理论能量密度,已成为最具发展潜力的新一代电化学储能技术,但硫正极存在电导率低、体积膨胀、多硫化物穿梭效应等技术瓶颈问题,制约了其实际应用。通过甲醛和3-氨丙基三乙氧基硅烷的醛胺缩合和溶胶-凝胶化反应合成了席夫碱二氧化硅凝胶,经与聚四氟乙烯乳液冷冻干燥、热处理同步刻蚀二氧化硅以及碳化制备了多孔氮氟共掺杂碳气凝胶(NF-CA)。以NF-CA为载体制备的NF-CA/S正极材料表现出优异的循环性能和倍率性能,0.2 C循环初始放电比容量高达1322 mA∙h/g,1 C循环200圈可逆比容量可保持564 mA∙h/g,2C倍率下可逆比容量高达598mA∙h/g。 展开更多
关键词 锂硫电池 氮氟共掺杂 碳气凝胶 NF-CA/s 正极材料
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部