期刊文献+
共找到47,717篇文章
< 1 2 250 >
每页显示 20 50 100
Constructing Al@C-Sn pellet anode without passivation layer for lithium-ion battery
1
作者 Kangzhe Cao Sitian Wang +3 位作者 Yanan He Jiahui Ma Ziwei Yue Huiqiao Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期552-561,共10页
Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes th... Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes the electrode structure instability,leading to poor cyclic stability.What’s worse,the natural Al2O3 layer on commercial Al pellets is always existed as a robust insulating barrier for elec-trons,which brings the voltage dip and results in low reversible capacity.Herein,this work synthesized core-shell Al@C-Sn pellets for LIBs by a plus-minus strategy.In this proposal,the natural Al2O3 passivation layer is eliminated when annealing the pre-introduced SnCl2,meanwhile,polydopamine-derived carbon is introduced as dual functional shell to liberate the fresh Al core from re-oxidization and alle-viate the volume swellings.Benefiting from the addition of C-Sn shell and the elimination of the Al2O3 passivation layer,the as-prepared Al@C-Sn pellet electrode exhibits little voltage dip and delivers a reversible capacity of 1018.7 mAh·g^(-1) at 0.1 A·g^(-1) and 295.0 mAh·g^(-1) at 2.0 A·g^(-1)(after 1000 cycles),respectively.Moreover,its diffusion-controlled capacity is muchly improved compared to those of its counterparts,confirming the well-designed nanostructure contributes to the rapid Li-ion diffusion and further enhances the lithium storage activity. 展开更多
关键词 lithium-ion battery high-performance anode ALUMINUM passivation layer plus-minus strategy
下载PDF
Thermal safety boundary of lithium-ion battery at different state of charge
2
作者 Hang Wu Siqi Chen +8 位作者 Yan Hong Chengshan Xu Yuejiu Zheng Changyong Jin Kaixin Chen Yafei He Xuning Feng Xuezhe Wei Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期59-72,共14页
Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg... Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems. 展开更多
关键词 lithium-ion battery battery safety Thermal runaway State of charge Numerical analysis
下载PDF
Electric-controlled pressure relief valve for enhanced safety in liquid-cooled lithium-ion battery packs
3
作者 Yuhang Song Jidong Hou +6 位作者 Nawei Lyu Xinyuan Luo Jingxuan Ma Shuwen Chen Peihao Wu Xin Jiang Yang Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期98-109,I0004,共13页
The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above... The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above IP65,which can trap flammable and explosive gases from battery thermal runaway and cause explosions.This poses serious safety risks and challenges for LCBESS.In this study,we tested overcharged battery inside a commercial LCBP and found that the conventionally mechanical pressure relief valve(PRV) on the LCBP had a delayed response and low-pressure relief efficiency.A realistic 20-foot model of an energy storage cabin was constructed using the Flacs finite element simulation software.Comparative studies were conducted to evaluate the pressure relief efficiency and the influence on neighboring battery packs in case of internal explosions,considering different sizes and installation positions of the PRV.Here,a newly developed electric-controlled PRV integrated with battery fault detection is introduced,capable of starting within 50 ms of the battery safety valve opening.Furthermore,the PRV was integrated with the battery management system and changed the battery charging and discharging strategy after the PRV was opened.Experimental tests confirmed the efficacy of this method in preventing explosions.This paper addresses the safety concerns associated with LCBPs and proposes an effective solution for explosion relief. 展开更多
关键词 Pressure relief valve Liquid-cooled battery pack Explosion Flacs
下载PDF
Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media
4
作者 Yingnan Yang Yingjie Yang +5 位作者 Chunlin He Yuezhou Wei Toyohisa Fujita Guifang Wang Shaojian Ma Wenchao Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期897-907,共11页
To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines ... To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines with Co(Ⅱ) to form an anion [Co(NO_(2))_(3)]^(-),and it is then extracted by N263.The extraction of Co(Ⅱ) is related to the concentration of NO_(2)^(-).The extraction efficiency of Co(Ⅱ) reaches the maximum of99.16%,while the extraction efficiencies of Ni(Ⅱ),Mn(Ⅱ),and Li(Ⅰ) are 9.27%-9.80% under the following conditions:30vol% of N263 and15vol% of iso-propyl alcohol in sulfonated kerosene,the volume ratio of the aqueous-to-organic phase is 2:1,the extraction time is 30 min,and1 M sodium nitrite in 0.1 MHNO_(3).The theoretical stages require for the Co(Ⅱ) extraction are performed in the McCabe–Thiele diagram,and the extraction efficiency of Co(Ⅱ) reaches more than 99.00% after three-stage counter-current extraction with Co(Ⅱ) concentration of 2544mg/L.When the HCl concentration is 1.5 M,the volume ratio of the aqueous-to-organic phase is 1:1,the back-extraction efficiency of Co(Ⅱ)achieves 91.41%.After five extraction and back-extraction cycles,the Co(Ⅱ) extraction efficiency can still reach 93.89%.The Co(Ⅱ) extraction efficiency in the actual leaching solution reaches 100%. 展开更多
关键词 COBALT N263 sodium nitrite EXTRACTION iso-propyl alcohol spent lithium-ion battery
下载PDF
Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery
5
作者 Tianqi Jia Geng Zhong +8 位作者 Yao Lv Nanrui Li Yanru Liu Xiaoliang Yu Jinshuo Zou Zhen Chen Lele Peng Feiyu Kang Yidan Cao 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1325-1340,共16页
Green energy storage devices play vital roles in reducing fossil fuel emissions and achieving carbon neutrality by 2050.Growing markets for portable electronics and electric vehicles create tremendous demand for advan... Green energy storage devices play vital roles in reducing fossil fuel emissions and achieving carbon neutrality by 2050.Growing markets for portable electronics and electric vehicles create tremendous demand for advanced lithium-ion batteries(LIBs)with high power and energy density,and novel electrode material with high capacity and energy density is one of the keys to next-generation LIBs.Silicon-based materials,with high specific capacity,abundant natural resources,high-level safety and environmental friendliness,are quite promising alternative anode materials.However,significant volume expansion and redundant side reactions with electrolytes lead to active lithium loss and decreased coulombic efficiency(CE)of silicon-based material,which hinders the commercial application of silicon-based anode.Prelithiation,preembedding extra lithium ions in the electrodes,is a promising approach to replenish the lithium loss during cycling.Recent progress on prelithiation strategies for silicon-based anode,including electrochemical method,chemical method,direct contact method,and active material method,and their practical potentials are reviewed and prospected here.The development of advanced Si-based material and prelithiation technologies is expected to provide promising approaches for the large-scale application of silicon-based materials. 展开更多
关键词 Si-based materials Prelithiation Coulombic efficiency Lithium loss lithium-ion battery
下载PDF
Robust state of charge estimation of lithium-ion battery via mixture kernel mean p-power error loss LSTM with heap-based-optimizer
6
作者 Wentao Ma Yiming Lei +1 位作者 Xiaofei Wang Badong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期768-784,I0016,共18页
The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,whi... The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,which is capable of estimating the future changing states of a nonlinear system.Since the BMS usually works under complicated operating conditions,i.e the real measurement data used for model training may be corrupted by non-Gaussian noise,and thus the performance of the original LSTM with the mean square error(MSE)loss may deteriorate.Therefore,a novel LSTM with mixture kernel mean p-power error(MKMPE)loss,called MKMPE-LSTM,is developed by using the MKMPE loss to replace the MSE as the learning criterion in LSTM framework,which can achieve robust SOC estimation under the measurement data contaminated with non-Gaussian noises(or outliers)because of the MKMPE containing the p-order moments of the error distribution.In addition,a meta-heuristic algorithm,called heap-based-optimizer(HBO),is employed to optimize the hyper-parameters(mainly including learning rate,number of hidden layer neuron and value of p in MKMPE)of the proposed MKMPE-LSTM model to further improve its flexibility and generalization performance,and a novel hybrid model(HBO-MKMPE-LSTM)is established for SOC estimation under non-Gaussian noise cases.Finally,several tests are performed under various cases through a benchmark to evaluate the performance of the proposed HBO-MKMPE-LSTM model,and the results demonstrate that the proposed hybrid method can provide a good robustness and accuracy under different non-Gaussian measurement noises,and the SOC estimation results in terms of mean square error(MSE),root MSE(RMSE),mean absolute relative error(MARE),and determination coefficient R2are less than 0.05%,3%,3%,and above 99.8%at 25℃,respectively. 展开更多
关键词 SOC estimation Long short term memory model Mixture kernel mean p-power error Heap-based-optimizer lithium-ion battery Non-Gaussian noisy measurement data
下载PDF
Electrolyte induced synergistic construction of cathode electrolyte interphase and capture of reactive free radicals for safer high energy density lithium-ion battery
7
作者 Mengfei Ding Xuning Feng +11 位作者 Yong Peng Jing Jing Tong Bowen Hou Yalan Xing Weifeng Zhang Li Wang Yu Wu Jiabin Lv Chunyan Luo Dejun Xiong Shichao Zhang Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期207-214,I0006,共9页
As the energy density of battery increases rapidly,lithium-ion batteries(LIBs)are facing serious safety issue with thermal runaway,which largely limits the large-scale applications of high-energy-density LIBs.It is ge... As the energy density of battery increases rapidly,lithium-ion batteries(LIBs)are facing serious safety issue with thermal runaway,which largely limits the large-scale applications of high-energy-density LIBs.It is generally agreed that the chemical crosstalk between the cathode and anode leads to thermal runaway of LIBs.Herein,a multifunctional high safety electrolyte is designed with synergistic construction of cathode electrolyte interphase and capture of reactive free radicals to limit the intrinsic pathway of thermal runaway.The cathode electrolyte interphase not only resists the gas attack from the anode but suppresses the parasitic side reactions induced by electrolyte.And the function of free radical capture has the ability of reducing heat release from thermal runaway of battery.The dual strategy improves the intrinsic safety of battery prominently that the triggering temperature of thermal runaway is increased by 24.4℃and the maximum temperature is reduced by 177.7℃.Simultaneously,the thermal runaway propagation in module can be self-quenched.Moreover,the electrolyte design balances the trade-off of electrochemical and safety performance of high-energy batteries.The capacity retention of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)|graphite pouch cell has been significantly increased from 53.85%to 97.05%with higher coulombic efficiency of 99.94%at operating voltage extended up to 4.5 V for 200 cycles.Therefore,this work suggests a feasible strategy to mitigate the safety risk of high-energy-density LIBs without sacrificing electrochemical performances. 展开更多
关键词 lithium-ion battery ELECTROLYTE battery safety Thermal runaway
下载PDF
Lithium-ion battery degradation trajectory early prediction with synthetic dataset and deep learning
8
作者 Mingqiang Lin Yuqiang You +3 位作者 Jinhao Meng Wei Wang Ji Wu Daniel-Ioan Stroe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期534-546,I0013,共14页
Knowing the long-term degradation trajectory of Lithium-ion(Li-ion) battery in its early usage stage is critical for the maintenance of the battery energy storage system(BESS) in reality. Previous battery health diagn... Knowing the long-term degradation trajectory of Lithium-ion(Li-ion) battery in its early usage stage is critical for the maintenance of the battery energy storage system(BESS) in reality. Previous battery health diagnosis methods focus on capacity and state of health(SOH) estimation which can receive only the short-term health status of the cell. This paper proposes a novel degradation trajectory prediction method with synthetic dataset and deep learning, which enables to grasp the characterization of the cell's health at a very early stage of Li-ion battery usage. A transferred convolutional neural network(CNN) is chosen to finalize the early prediction target, and the polynomial function based synthetic dataset generation strategy is designed to reduce the costly data collection procedure in real application. In this thread, the proposed method needs one full lifespan data to predict the overall degradation trajectories of other cells. With only the full lifespan cycling data from 4 cells and 100 cycling data from each cell in experimental validation, the proposed method shows a good prediction accuracy on a dataset with more than 100 commercial Li-ion batteries. 展开更多
关键词 lithium-ion battery Degradation trajectory Long-term prediction Transferred convolutional neural network
下载PDF
Two-dimensional CrP_(2) with high specific capacity and fast charge rate for lithium-ion battery
9
作者 王晓允 荆涛 梁冬梅 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期489-494,共6页
The electrode material is regarded as one of the key factors that determine the performance of lithium-ion batteries(LIBs).However,it is still a challenge to search for an anode material with large capacity,low diffus... The electrode material is regarded as one of the key factors that determine the performance of lithium-ion batteries(LIBs).However,it is still a challenge to search for an anode material with large capacity,low diffusion barrier,and good stability.In the present work,two new CrP_(2) monolayers(Pmmn-CrP_(2) and Pmma-CrP_(2)) are predicted by means of first principles swarm structure search.Our study shows that both the two CrP_(2) monolayers have high dynamical and thermal stability,as well as excellent electron conductivity.Additionally,Pmmn-CrP_(2) exhibits a remarkably high storage capacity of 705 mA·h·g^(-1) for Li,meanwhile the diffusion energy barrier of Li on the surface of this monolayer is 0.21 eV,ensuring it as a high-performance anode material for LIBs.We hope that our study will inspire researchers to search for new-type two-dimensional(2D) transition metal phosphides for the electrode materials of LIB s. 展开更多
关键词 lithium-ion battery electronic structure first principles
原文传递
Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions 被引量:2
10
作者 Hui Pang Longxing Wu +2 位作者 Jiahao Liu Xiaofei Liu Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期1-12,I0001,共13页
Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this pap... Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation. 展开更多
关键词 lithium-ion batteries Physics-informed neural network Bidirectional long-term memory Heat generation rate estimation Electrochemical model
下载PDF
Deep Transfer Ensemble Learning-Based Diagnostic of Lithium-Ion Battery 被引量:1
11
作者 Dongxu Ji Zhongbao Wei +2 位作者 Chenyang Tian Haoran Cai Junhua Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1899-1901,共3页
Dear Editor,State of health(SOH)estimation is critical for the management of lithium-ion batteries(LIBs).Data-driven estimation methods are appealing with the availability of real-world battery data.However,time-and d... Dear Editor,State of health(SOH)estimation is critical for the management of lithium-ion batteries(LIBs).Data-driven estimation methods are appealing with the availability of real-world battery data.However,time-and data-costly training for batteries with different chemistries and models barriers their efficient deployment. 展开更多
关键词 battery battery SOH
下载PDF
An Early Minor-Fault Diagnosis Method for Lithium-Ion Battery Packs Based on Unsupervised Learning
12
作者 Xin Gu Yunlong Shang +3 位作者 Yongzhe Kang Jinglun Li Ziheng Mao Chenghui Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期810-812,共3页
Dear Editor,Any fault of a battery system that is not handled timely can cause catastrophic consequences.Therefore,it is significant to diagnose battery faults early and accurately.Due to the complex nonlinear feature... Dear Editor,Any fault of a battery system that is not handled timely can cause catastrophic consequences.Therefore,it is significant to diagnose battery faults early and accurately.Due to the complex nonlinear features and inconsistency of lithium batteries,traditional fault diagnosis methods usually fail to detect battery minor faults in the early stages. 展开更多
关键词 battery battery FAULT
下载PDF
Deep learning enhanced lithium-ion battery nonlinear fading prognosis
13
作者 Shanling Ji Jianxiong Zhu +7 位作者 Zhiyang Lyu Heze You Yifan Zhou Liudong Gu Jinqing Qu Zhijie Xia Zhisheng Zhang Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期565-573,I0015,共10页
With the assistance of artificial intelligence,advanced health prognosis technique plays a critical role in the lithium-ion(Li-ion) batteries management system.However,conventional data-driven early aging prediction e... With the assistance of artificial intelligence,advanced health prognosis technique plays a critical role in the lithium-ion(Li-ion) batteries management system.However,conventional data-driven early aging prediction exhibited dramatic drawbacks,i.e.,volatile capacity nonlinear fading trajectories create obstacles to the accurate multistep ahead prediction due to the complex working conditions of batteries.Herein,a novel deep learning model is proposed to achieve a universal and accurate Li-ion battery aging prognosis.Two battery datasets with various electrode types and cycling conditions are developed to validate the proposed approaches.Knee-point probability(KPP),extracted from the capacity loss curve,is first proposed to detect knee points and improve state-of-health(SOH) predictive accuracy,especially during periods of rapid capacity decline.Using one-cycle data of partial raw voltage as the model input,the SOH and KPP can be simultaneously predicted at multistep ahead,whereas the conventional method showed worse accuracy.Furthermore,to explore the underlying characteristics among various degradation tendencies,an online model update strategy is developed by leveraging the adversarial adaptationinduced transfer learning technique.This work gains new sights into the comprehensive Li-ion battery management and prognosis framework through decomposing capacity degradation trajectories and adversarial learning on the unlabeled samples. 展开更多
关键词 battery aging prognosis Deep learning Knee-point probability Sate-of-health
下载PDF
An upgraded polymeric composite with interparticle chemical bonding microstructure toward lithium-ion battery separators with enhanced safety and electrochemical performances
14
作者 Qian Zhao Ling Ma +10 位作者 Ye Xu Xiulong Wu Shuai Jiang Qiaotian Zheng Guang Hong Bin He Chen Li Wanglai Cen Wenjun Zhou Yan Meng Dan Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期402-413,共12页
A composite separator of SiC/PVDF-HFP was synthesized for lithium-ion batteries with high thermal and mechanical stabilities.Benefiting from the nanoscale,high hardness,and melting point of SiC,SiC/PVDFHFP with highly... A composite separator of SiC/PVDF-HFP was synthesized for lithium-ion batteries with high thermal and mechanical stabilities.Benefiting from the nanoscale,high hardness,and melting point of SiC,SiC/PVDFHFP with highly uniform microstructure was obtained.This polarization caused by barrier penetration was significantly restrained.Due to the Si-F bond between SiC and PVDF-HFP,the structural stability has been obviously enhanced,which could suppress the growth of lithium(Li) dendrite.Furthermore,some 3D reticulated Si nanowires are found on the surface of Li anode,which also greatly inhibit Li dendrites and result in irregular flakes of Li metal.Especially,the shrinkage of 6% SiC/PVDF-HFP at 150℃ is only 5%,which is notably lower than those of PVDF-HFP and Celgard2500.The commercial LiFePO_(4) cell assembled with 6% SiC/PVDF-HFP possesses a specific capacity of 157.8 mA h g^(-1) and coulomb efficiency of 98% at 80℃.In addition,the tensile strength and modulus of 6% SiC/PVDF-HFP could reach 14.6 and 562 MPa,respectively.And a small deformation(1000 nm) and strong deformation recovery are obtained under a high additional load(2.3 mN).Compared with PVDF-HFP and Celgard2500,the symmetric Li cell assembled with 6% SiC/PVDF-HFP has not polarized after 900 cycles due to its excellent mechanical stabilities.This strategy provides a feasible solution for the composite separator of high-safety batteries with a high temperature and impact resistance. 展开更多
关键词 SiC PVDF-HFP Composite separator Thermal stability Mechanical stability High safety battery
下载PDF
Online Identification of Lithium-ion Battery Model Parameters with Initial Value Uncertainty and Measurement Noise
15
作者 Xinghao Du Jinhao Meng +4 位作者 Kailong Liu Yingmin Zhang Shunli Wang Jichang Peng Tianqi Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期305-314,共10页
Online parameter identification is essential for the accuracy of the battery equivalent circuit model(ECM).The traditional recursive least squares(RLS)method is easily biased with the noise disturbances from sensors,w... Online parameter identification is essential for the accuracy of the battery equivalent circuit model(ECM).The traditional recursive least squares(RLS)method is easily biased with the noise disturbances from sensors,which degrades the modeling accuracy in practice.Meanwhile,the recursive total least squares(RTLS)method can deal with the noise interferences,but the parameter slowly converges to the reference with initial value uncertainty.To alleviate the above issues,this paper proposes a co-estimation framework utilizing the advantages of RLS and RTLS for a higher parameter identification performance of the battery ECM.RLS converges quickly by updating the parameters along the gradient of the cost function.RTLS is applied to attenuate the noise effect once the parameters have converged.Both simulation and experimental results prove that the proposed method has good accuracy,a fast convergence rate,and also robustness against noise corruption. 展开更多
关键词 Li-ion battery Equivalent circuit model Recursive least squares Recursive total least squares
下载PDF
Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery 被引量:9
16
作者 XiaoLong Xu SiXu Deng +2 位作者 Hao Wang JingBing Liu Hui Yan 《Nano-Micro Letters》 SCIE EI CAS 2017年第2期97-115,共19页
High-voltage lithium-ion batteries(HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltage... High-voltage lithium-ion batteries(HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltages to be higher than 4.5 V on charge. Lithium nickel manganese spinel LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode is the most promising candidate among the 5 V cathode materials for HVLIBs due to its flat plateau at 4.7 V. However, the degradation of cyclic performance is very serious when LNMO cathode operates over 4.2 V. In this review, we summarize some methods for enhancing the cycling stability of LNMO cathodes in lithium-ion batteries, including doping, cathode surface coating,electrolyte modifying, and other methods. We also discuss the advantages and disadvantages of different methods. 展开更多
关键词 High-voltage cathode LINI0.5MN1.5O4 lithium-ion battery Cycling stability Platform voltage
下载PDF
A Nonlinear Observer Approach of SOC Estimation Based on Hysteresis Model for Lithium-ion Battery 被引量:7
17
作者 Yan Ma Bingsi Li +2 位作者 Guangyuan Li Jixing Zhang Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期195-204,共10页
In this paper, a state of charge(SOC) estimation approach for lithium-ion battery based on equivalent circuit model and the input-to-state stability(ISS) theory has been proposed. According to the electrochemical perf... In this paper, a state of charge(SOC) estimation approach for lithium-ion battery based on equivalent circuit model and the input-to-state stability(ISS) theory has been proposed. According to the electrochemical performance of lithiumion battery, the equivalent circuit model with two RC networks is established, which includes hysteresis characteristic in inner electrochemical response process. The nonlinear relation between open circuit voltage(OCV) and SOC is obtained from a rapid test. Exponential fitting method is used to identify the parameters of the model. A novel state observer based on ISS theory is designed for lithium-ion battery SOC estimation. The designed observer is tested on AMESim and Simulink co-simulation. The simulation results show that the proposed method has a high SOC estimation accuracy with an error of about 2 percent. 展开更多
关键词 AMESIM hysteresis model input-to-state stability (ISS) observer lithium-ion battery state of charge(SOC)
下载PDF
Nonlinear health evaluation for lithium-ion battery within full-lifespan 被引量:4
18
作者 Heze You Jiangong Zhu +10 位作者 Xueyuan Wang Bo Jiang Hao Sun Xinhua Liu Xuezhe Wei Guangshuai Han Shicong Ding Hanqing Yu Weihan Li Dirk Uwe Sauer Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期333-341,I0010,共10页
Lithium-ion batteries(LIBs), as the first choice for green batteries, have been widely used in energy storage, electric vehicles, 3C devices, and other related fields, and will have greater application prospects in th... Lithium-ion batteries(LIBs), as the first choice for green batteries, have been widely used in energy storage, electric vehicles, 3C devices, and other related fields, and will have greater application prospects in the future. However, one of the obstacles hindering the future development of battery technology is how to accurately evaluate and monitor battery health, which affects the entire lifespan of battery use. It is not enough to assess battery health comprehensively through the state of health(SoH) alone, especially when nonlinear aging occurs in onboard applications. Here, for the first time, we propose a brand-new health evaluation indicator—state of nonlinear aging(SoNA) to explain the nonlinear aging phenomenon that occurs during the battery use, and also design a knee-point identification method and two SoNA quantitative methods. We apply our health evaluation indicator to build a complete LIB full-lifespan grading evaluation system and a ground-to-cloud service framework, which integrates multi-scenario data collection, multi-dimensional data-based grading evaluation, and cloud management functions. Our works fill the gap in the LIBs’ health evaluation of nonlinear aging, which is of great significance for the health and safety evaluation of LIBs in the field of echelon utilization such as vehicles and energy storage. In addition, this comprehensive evaluation system and service framework are expected to be extended to other battery material systems other than LIBs, yet guiding the design of new energy ecosystem. 展开更多
关键词 lithium-ion battery State of nonlinear aging Knee-point Grading evaluation system Echelon utilization
下载PDF
Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery 被引量:4
19
作者 Jialong Liu Zhirong Wang Jinlong Bai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期531-541,I0014,共12页
Thermal runaway caused by overcharging results in catastrophic disasters. The influences of charging rate, ambient temperature and aging on thermal runaway caused by overcharging are studied qualitatively and quantita... Thermal runaway caused by overcharging results in catastrophic disasters. The influences of charging rate, ambient temperature and aging on thermal runaway caused by overcharging are studied qualitatively and quantitatively in this manuscript. The results of overcharging tests indicate that high charging rate and ambient temperature increase thermal runaway risk. Aging in 40 ℃ decreases thermal runaway risk. The risk increase of battery with high overcharging rate and in high ambient temperature is due to fast lithium plating reaction and accelerated SEI decomposition, respectively. The risk decrease of aged battery is due to the occurrence of SEI before overcharging tests. SEI suppresses the side reactions between lithium plating and electrolyte. The results of orthogonal tests indicate that the rank of effect is: discharging rate > ambient temperature > aging. The heat generation is calculated based on the results of overcharging tests. The calculation results indicate that heat generated by side reactions contributes more to the total heat generation. Although thermal runaway does not occur during overcharging with low current, the heat dissipation of the lithium-ion battery is the most and deserves focus. The results are important to the design of battery management system and thermal management system to prevent thermal runaway induced by overcharging in total lifespan of battery. 展开更多
关键词 lithium-ion battery safety OVERCHARGING AGING Thermal runaway
下载PDF
Review of lithium-ion battery state of charge estimation 被引量:5
20
作者 Ning Li Yu Zhang +4 位作者 Fuxing He Longhui Zhu Xiaoping Zhang Yong Ma Shuning Wang 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期619-630,共12页
The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging... The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging and discharging of lithium-ion batteries,thereby improving discharge efficiency and extending cycle life.In this study,the key lithium-ion battery SOC estimation technologies are summarized.First,the research status of lithium-ion battery modeling is introduced.Second,the main technologies and difficulties in model parameter identification for lithium-ion batteries are discussed.Third,the development status and advantages and disadvantages of SOC estimation methods are summarized.Finally,the current research problems and prospects for development trends are summarized. 展开更多
关键词 lithium-ion battery battery model Parameter identification State of charge estimation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部