期刊文献+
共找到2,902篇文章
< 1 2 146 >
每页显示 20 50 100
Impact and mechanism of bisphosphonate depressant 1-hydroxypropane-1,1-diphosphonic acid on flotation decalcification of dolomite-rich magnesite ore
1
作者 Wengang Liu Xudong Chen +3 位作者 Wenbao Liu Naixu Zhang Yong Mao Ying Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期1017-1032,共16页
Given the depletion of high-quality magnesite deposits and the rising demand for high-end magnesium materials,the separation and utilization of high-calcium magnesite ores have become essential.However,the similar sur... Given the depletion of high-quality magnesite deposits and the rising demand for high-end magnesium materials,the separation and utilization of high-calcium magnesite ores have become essential.However,the similar surface properties and solubility of semi-soluble salt-type minerals,pose significant challenges for the utilization of dolomite-rich magnesite resources.In this study,1-hydroxypropane-1,1-di phosphonic acid(HPDP)was identified for the first time as a high-performance depressant for dolomite.Various tests,including contact angle measurements,ζ potential analysis,X-ray photoelectron spectroscopy,and atomic force microscopy,were conducted to elucidate the interfacial interaction mechanisms of HPDP on the surfaces of the two minerals at different scales.Additionally,molecular modeling calculations were used to detail the spatial matching relationship between HPDP and the crystal faces of the two minerals.It was emphasized that HPDP specifically adsorbed onto the dolomite surface by forming calcium phosphonate,ensuring that the dolomite surface remained hydrophilic and sank.Moreover,it was found that the adsorption strength of HPDP on the mineral surfaces depended on the activity of the metal sites and their spatial distribution.These findings provide a theoretical foundation for the molecular design of flotation reagents for high-calcium magnesite ores. 展开更多
关键词 Depressant Interfacial mechanism MAGNESITE dolomite DFT DECALCIFICATION
下载PDF
Role of tannin pretreatment in flotation separation of magnesite and dolomite
2
作者 Xiufeng Gong Jin Yao +5 位作者 Jun Guo Bin Yang Haoran Sun Wanzhong Yin Yulian Wang Yafeng Fu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期452-461,共10页
Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulator... Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite. 展开更多
关键词 tannin pretreatment selective inhibition flotation separation MAGNESITE dolomite
下载PDF
Reactive transport modeling constraints on the complex genesis of a lacustrine dolomite reservoir:A case from the Eocene Qaidam Basin,China
3
作者 Ying Xiong Bo Liu +5 位作者 Xiu-Cheng Tan Zheng-Meng Hou Jia-Shun Luo Ya-Chen Xie Kai-Bo Shi Kun-Yu Wu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2240-2256,共17页
Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.... Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.This paper presents a case study of the Eocene Qaidam Basin that combines RTM results with petrological and mineralogical evidence.The results show that the Eocene Xiaganchaigou Formation is characterized by mixed siliciclastic-carbonate-evaporite sedimentation in a semiclosed saline lacustrine environment.Periodic evaporation and salinization processes during the syngeneticpenecontemporaneous stage gave rise to the replacive genesis of dolomites and the cyclic enrichment of dolomite in the middle-upper parts of the meter-scale depositional sequences.The successive change in mineral paragenesis from terrigenous clastics to carbonates to evaporites was reconstructed using RTM simulations.Parametric uncertainty analyses further suggest that the evaporation intensity(brine salinity)and particle size of sediments(reactive surface area)were important rate-determining factors in the dolomitization,as shown by the relatively higher reaction rates under conditions of higher brine salinity and fine-grained sediments.Combining the simulation results with measured mineralogical and reservoir physical property data indicates that the preservation of original intergranular pores and the generation of porosity via replacive dolomitization were the major formation mechanisms of the distinctive lacustrine dolomite reservoirs(widespread submicron intercrystalline micropores)in the Eocene Qaidam Basin.The results confirm that RTM can be effectively used in geological studies,can provide a better general understanding of the dolomitizing fluid-rock interactions,and can shed light on the spatiotemporal evolution of mineralogy and porosity during dolomitization and the formation of lacustrine dolomite reservoirs. 展开更多
关键词 Reactive transport modeling Lacustrine dolomite Mineralogy and porosity evolution Reservoir genesis
下载PDF
Characteristics and main controlling factors of intra-platform shoal thin-layer dolomite reservoirs:A case study of Middle Permian Qixia Formation in Gaoshiti-Moxi area of Sichuan Basin,SW China
4
作者 HE Jiang LIAN Zhihua +5 位作者 LUO Wenjun ZHOU Hui XU Huilin HE Puwei Yang Yi LAN Xuemei 《Petroleum Exploration and Development》 SCIE 2024年第1期69-80,共12页
Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the control... Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin. 展开更多
关键词 Middle Permian Qixia Formation intra-platform shoal thin-layer dolomite paleogeomorphology diagenesis Gaoshiti-Moxi area Sichuan Basin
下载PDF
Facies-controlled prediction of dolomite reservoirs in the Middle Permian Qixia Formation in Shuangyushi,northwestern Sichuan Basin
5
作者 Chao Zheng Benjian Zhang +11 位作者 Rongrong Li Hong Yin Yufeng Wang Xin Hu Xiao Chen Ran Liu Qi Zeng Zhiyun Sun Rui Zhang Xingyu Zhang Weidong Yin Kun Zhang 《Energy Geoscience》 EI 2024年第2期21-30,共10页
The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite r... The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite reservoirs were predicted using the techniques of pre-stack Kirchhoff-Q compensation for absorption,inverse Q filtering,low-to high-frequency compensation,forward modeling,and facies-controlled seismic meme inversion.The results are obtained in six aspects.First,the dolomite reservoirs mainly exist in the middle and lower parts of the second member of Qixia Formation(Qi2 Member),which coincide with the zones shoal cores are developed.Second,the forward modeling shows that the trough energy at the top and bottom of shoal core increases with increasing shoal-core thickness,and weak peak reflections are associated in the middle of shoal core.Third,five types of seismic waveform are identified through waveform analysis of seismic facies.Type-Ⅰ and Type-Ⅱ waveforms correspond to promising facies(shoal core microfacies).Fourth,vertically,two packages of thin dolomite reservoirs turn up in the sedimentary cycle of intraplatform shoal in the Qi2 Member,and the lower package is superior to the upper package in dolomite thickness,scale and lateral connectivity.Fifth,in plane,significantly controlled by sedimentary facies,dolomite reservoirs laterally distribute with consistent thickness in shoal cores at topographical highs and extend toward the break.Sixth,the promising prospects are the zones with thick dolomite reservoirs and superimposition of horstegraben structural traps. 展开更多
关键词 Reservoir prediction Seismic facies Shoal-facies dolomite Qixia formation Shuangyushi Sichuan basin
下载PDF
Rock physical characteristics of deep dolomite under complex geological conditions:A case study of 4th Member of Sinian Dengying Formation in the Sichuan Basin,China
6
作者 Chuang Li Shu-Xin Pan +4 位作者 Hong-Bin Wang Ji-Xin Deng Jian-Guo Zhao Zhi Li Yu Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2370-2382,共13页
The deep-ultra deep carbonate reservoir in China,commonly subjected to modification of multi-stage diagenesis,has extremely high heterogeneity.Conventional rock physics analysis cannot accurately identify the elastic ... The deep-ultra deep carbonate reservoir in China,commonly subjected to modification of multi-stage diagenesis,has extremely high heterogeneity.Conventional rock physics analysis cannot accurately identify the elastic responses of reservoir.Here,the rock physics properties of the dolomite from the 4th Member of the Sinian Dengying Formation are experimentally measured,and the change law of rock physics characteristics is investigated within the framework of the diagenetic processes by the analysis of the elastic and petrologic characteristics,pore structure,and sedimentary environments.The results show that the differentiated diagenesis results in different pore structure characteristics and microtexture characteristics of the rock.The microbial dolomite of the algal mound-grain beach facies is subjected to the contemporaneous microbial dolomitization and seepage-reflux dolomitization,penecontemporaneous selective dissolution,burial dolomitization,and hydrothermal dolomitization.The resultant crystalline dolomite is found with one main type of the dolomite crystal contact boundaries,and the dissolution pore is extensive development.The siliceous,muddy,and limy dolomite of the interbeach sea environment mainly experiences the weak capillary concentration dolomitization,intensive mechanical compaction-induced densification,and burial dolomitization.Such crystalline dolomite is observed with four types of contact boundaries,namely the dolomite contact,clay contact,quartz contact,and calcite contact boundaries,and porosity mostly attributed to residual primary inter-granular or crystalline pores.The samples with the same crystal boundary condition have consistent correlations between the compressional-and shear-wave velocities,and between the compressional-wave velocity and the velocity ratio.Additionally,the variation of the acoustic velocity with effective pressure and the intensity of pore-scale fluid-related dispersion are controlled by the differentiation of pore structure types of the samples.The varied effects of soft pores like micro-cracks on the compressional-and shearwave velocity causes considerable changes in the relationships between the compressional-and shearwave velocities,compressional-wave velocity and velocity ratio,and porosity and acoustic velocity.This research is an attempt to demonstrate a novel method for investigating the rock physics variation of rock during the geological process,and the obtained findings can provide the rock physics basis for seismic prediction of the characteristics of deep carbonate reservoirs. 展开更多
关键词 Deep-ultra deep carbonate reservoirs Rock physics properties dolomite Seismic elastic properties MICRO-CRACK Pore structure types
下载PDF
Classification and rating of disintegrated dolomite strata for slope stability analysis
7
作者 Wenlian Liu Xinyue Gong +3 位作者 Jiaxing Dong Hanhua Xu Peixuan Dai Shengwei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2552-2562,共11页
Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gainin... Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes. 展开更多
关键词 Disintegrated dolomite slope Basic quality(BQ) Slope stability probability classification (SSPC) Rock mass quality classification Limit equilibrium method(LEM)
下载PDF
Effect of depressants on flotation separation of magnesite from dolomite and calcite 被引量:5
8
作者 Wenqing Qin Junjie Hu +4 位作者 Hailing Zhu Fen Jiao Wenhao Jia Junwei Han Chen Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期83-91,共9页
The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosu... The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity. 展开更多
关键词 Sodium silicate MAGNESITE dolomite CALCITE Flotation separation INHIBITION
下载PDF
Removal of dolomite and potassium feldspar from apatite using simultaneous flotation with a mixed cationic-anionic collector 被引量:4
9
作者 Haoyong Yu Yangge Zhu +2 位作者 Liang Lu Xiaoxing Hu Songqing Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期783-791,共9页
This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,s... This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,several experimental methods,including flotation experiments,zeta-potential detection,microcalorimetry detection,XPS analysis and FTIR measurements,were used.The flotation tests showed that dolomite and potassium feldspar can be successfully removed from apatite simultaneously when the molar ratio of DTAB to NaOL was 2:1 with pH 4.5.Zeta-potential and microcalorimetry detection suggested that NaOL and DTAB were adsorbed on the surface of dolomite and potassium feldspar respectively,and part of NaOL and DTAB formed co-adsorption on the surface of potassium feldspar to enhance the floatability of potassium feldspar.The XPS and FTIR spectra analysis demonstrated that the cationic collector,DTAB,was first adsorbed on the surface of potassium feldspar through electrostatic attraction in the DTAB/NaOL mixture system.Subsequently,the anionic NaOL collector and cationic DTAB collector form an electron neutralisation complex,thereby resulting in co-adsorption on the surface of potassium feldspar.NaOL was chemically reacted and adsorbed on dolomite surface,but almost no collector was adsorbed on apatite surface.Finally,the adsorption models of different collectors on mineral surface were obtained. 展开更多
关键词 FLOTATION Mixed collectors APATITE Potassium feldspar dolomite
下载PDF
Origin of dolomites in the Permian dolomitic reservoirs of Fengcheng Formation in Mahu Sag,Junggar Basin, NW China
10
作者 TANG Yong LYU Zhengxiang +7 位作者 HE Wenjun QING Yuanhua LI Xiang SONG Xiuzhang YANG Sen CAO Qinming QIAN Yongxin ZHAO Xinmei 《Petroleum Exploration and Development》 2023年第1期43-56,共14页
Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock r... Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock reservoir of the Fengcheng Formation in the Mahu Sag were analyzed by polarized and fluorescence thin sections,scanning electron microscope(SEM),electron microprobe(EMP),C,O and Sr isotopes analysis,and other techniques.(1)Dolomites were mainly precipitated in three stages:penecontemporaneous-shallow burial stage(early stage of the Middle Permian),middle burial stage(middle stage of the Middle Permian),and middle-deep burial stage,with the former two stages in dominance.(2)Dolomitization fluid was high-salinity brine originating from alkaline lake.In the penecontemporaneous-shallow burial stage,Mg^(2+)was mainly supplied by alkaline-lake fluid and devitrification of volcanic glass.In the middle burial stage,Mg^(2+)mainly came from the transformation of clay minerals,devitrification of volcanic glass and dissolution of aluminosilicates such as feldspar.(3)Regular changes of Mg,Mn,Fe,Sr,Si and other elements during the growth of dolomite were mainly related to the alkaline-lake fluid,and to different influences of devitrification and diagenetic alteration of volcanic materials during the burial.(4)In the penecontemporaneous stage,induced by alkaline-lake microorganisms,the micritic-microcrystalline dolomites were formed by primary precipitation,replacement of aragonite and high-Mg calcite,and other processes;in the shallow burial stage,the silt-sized dolomites were formed by continuous growth of micritic-microcrystalline dolomite and replacement of calcites,tuffs and other substances;in the middle burial stage,the dolomites,mainly silt-and fine-sized,were formed by replacement of volcanic materials.The research results are referential for investigating the formation mechanism and distribution patterns of tight dolomitic reservoirs in the Mahu Sag and other similar oil and gas bearing areas. 展开更多
关键词 dolomitic rock dolomite origin tight oil reservoir Permian Fengcheng Formation Mahu Sag Junggar Basin fluid source fluid evolution isotopic composition
下载PDF
Production of high-purity Mg metal from dolomite through novel molten salt electrolysis and vacuum distillation
11
作者 Hyeong-Jun Jeoung Tae-Hyuk Lee +2 位作者 Jin-Young Lee Kyung-Woo Yi Jungshin Kang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1308-1320,共13页
In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten s... In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten salt at 1083–1173 K by applying an average current of 1.42–1.46 A for 9.50–21.0 h,the current efficiency of 66.4–88.6%was obtained.The produced Mg alloys consisted of MgCu_(2)and Cu(Mg)or MgCu_(2)and CuMg_(2)phases,depending on the Mg concentration in the Mg alloy.When the electrolysis of calcined dolomite was conducted in MgF_(2)–LiF–CaF_(2)molten salt at 1083 K,the current efficiency was 40.9–71.4%,owing to undesired reactions such as electroreduction of Ca^(2+)or/and CO_(3)^(2−)ions.Meanwhile,the current efficiency increased from 40.9%to 63.2%by utilizing a Pt anode,because the occurrence of CO_(3)^(2−)ions in the molten salt was prevented.After vacuum distillation of the obtained Mg alloys at 1300 K for 10 h,Mg metal with a purity of 99.9996–99.9998%was produced.Therefore,the feasibility of this novel process for the production of high-purity Mg metal from dolomite was demonstrated. 展开更多
关键词 High-purity magnesium dolomite Magnesium oxide Electrolytic process Copper metal cathode Vacuum distillation
下载PDF
Reservoir Characterization of Special Dolomite Rock of Fengcheng Formation in Junggar Basin, China
12
作者 Famu Huang Yun Liu +8 位作者 Chenhao Pan Duocai Wang Ping Zhang Yaping Fu Hong Zhang Haibo Su Jun Lu Zhi Zhong Bin Wei 《Journal of Geoscience and Environment Protection》 2023年第9期333-350,共18页
Dolomites and eruptive rocks are well-developed in the Permian Fengcheng Formation in Junggar Basin in China, in which oil and gas are accumulated extensively. Until now, high-yield industrial oil and gas flows have b... Dolomites and eruptive rocks are well-developed in the Permian Fengcheng Formation in Junggar Basin in China, in which oil and gas are accumulated extensively. Until now, high-yield industrial oil and gas flows have been obtained in the dolomitic tuff of the second unit of the Fengcheng Formation, which demonstrates the huge exploration potential of the thick layer of massive dolomitic tuff. The lithology of the second unit of the Fengcheng Formation in this area has gradually transformed from the dolomite, dolomitic tuff to siltstone from east to west. Moreover, the well testing shows that the reservoir is oil-saturated, and the production rate mainly depends on the reservoir’s physical properties and fracture development. In this study, different types of data including core data, well log and seismic data are used cooperatively to characterize the sedimentary, structure and fracture features of the Fengcheng Formation, and then characterize the promising target zone in the study area. The result indicates that hydrocarbons are most accumulated along the deep fault in the Wu-Xia fault zone, which will be the favorable zone for the next progressive exploration. 展开更多
关键词 Junggar Basin Fengcheng Formation Section II PARAGENESIS dolomitic Tuff Fracture
下载PDF
Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy
13
作者 Wenhua Yu Yanyan Wang +5 位作者 Aimin Wu Aikui Li Zhiwen Qiu Xufeng Dong Chuang Dong Hao Huang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期138-151,共14页
Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous ... Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density. 展开更多
关键词 lithium-rich manganese-based cathodes Lithium ion batteries Oxygen redox Oxygen evolution Integrated strategy
下载PDF
Enhanced structural stability and durability in lithium-rich manganese-based oxide via surface double-coupling engineering
14
作者 Jiayu Zhao Yuefeng Su +10 位作者 Jinyang Dong Xi Wang Yun Lu Ning Li Qing Huang Jianan Hao Yujia Wu Bin Zhang Qiongqiong Qi Feng Wu Lai Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期274-283,共10页
Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes of... Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore,this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional(3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li_(3)PO_(4) coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li_(3)PO_(4) to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 m V per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability. 展开更多
关键词 Lithium-ion battery Layered lithium-rich cathode Surface double-coupling engineering Lattice strain Oxygen release
下载PDF
Kinetics of extracting magnesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction 被引量:7
15
作者 傅大学 冯乃祥 +2 位作者 王耀武 彭建平 狄跃忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期839-847,共9页
The vacuum aluminothermic reduction of the mixture of calcined magnesite and calcined dolomite was studied. An isothermal reduction method satisfying the vacuum aluminothermic reduction was proposed. The experiments w... The vacuum aluminothermic reduction of the mixture of calcined magnesite and calcined dolomite was studied. An isothermal reduction method satisfying the vacuum aluminothermic reduction was proposed. The experiments were carried out at 4 Pa. The results indicate that the reduction rate is increased with increasing temperature, content of aluminum and pellet forming pressure. The XRD patterns of pellets at different reduction stages confirm that the reduction process can be roughly classified into three stages:the formation of MgAl2O4, and Ca12Al14O33 phases;the phase transformation from MgAl2O4 and C12A7 to CaAl2O4;the formation of CaAl4O7 phase. The experimental data were divided into three parts according to the kinetic models. The apparent activation energies of the three parts were determined to be 98.2, 133.0 and 223.3 kJ/mol, respectively. 展开更多
关键词 Amagnesium KINETICS aluminothermic reduction MAGNESITE dolomite
下载PDF
Mechanism of extracting magenesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction 被引量:6
16
作者 傅大学 王耀武 +3 位作者 彭建平 狄跃忠 陶绍虎 冯乃祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2677-2686,共10页
The process of aluminothermic reduction of a mixture of calcined dolomite and calcined magnesite had been developed. The mechanism of the process was studied by SEM and EDS. The reduction process was divided into thre... The process of aluminothermic reduction of a mixture of calcined dolomite and calcined magnesite had been developed. The mechanism of the process was studied by SEM and EDS. The reduction process was divided into three stages:0≤ηt/ηf≤0.43±0.06, 0.43±0.06≤ηt/ηf≤0.9±0.02 and 0.9±0.02≤ηt/ηf<1, whereηt andηf are the reduction ratio at time t and the final reduction ratio obtained in the experiment at temperature T, respectively. The first stage included the direct reaction between calcined dolomite or calcined magnesite and Al with 12CaO·7Al2O3 and MgO·Al2O3 as products. The reaction rate depended on the chemical reaction. The CA phase was mainly produced in the second stage and the overall reaction rate was determined by both the diffusion of Ca2+ with molten Al and the chemical reaction. The CA2 phase was mainly produced in the third stage and the reaction process was controlled by the diffusion of Ca2+. 展开更多
关键词 magnesium aluminothermic reduction MAGNESITE dolomite MECHANISM
下载PDF
Behavior of REE Fractionation during Weathering of Dolomite Regolith Profile in Southwest China 被引量:16
17
作者 GONG Qingjie ZHANG Gaixia +2 位作者 ZHANG Jing JIANG Biao MA Nan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第6期1439-1447,共9页
REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The we... REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The weathering of dolomite is divided into two stages:the pedogenesis stage and soil evolution stage,corresponding to the saprolites and soils respectively in the regolith profile. SiO_2,TiO_2,P_2O_5,Zr,Hf,Nb and Ta were immobile components during the weathering by and large, while Al_2O_3,K_2O and Fe_2O_3 were lost during the soil evolution stage in the physical form(clay minerals probably).REE were fractionated during the whole weathering of dolomite.The field weathering profile and the lab acid-leaching experiments on dolomite indicate that MREE were enriched clearly relative to other REE during the pedogenesis stage in a "capillary ascending-adsorption" mechanism, but they did not fractionate clearly in the soil evolution stage.REE were lost and accumulated in the weathering front of dolomite during the soil evolution stage in a "physical-chemical leaching" mechanism. 展开更多
关键词 REE FRACTIONATION WEATHERING dolomite
下载PDF
The relationship between dolomite textures and their formation temperature: a case study from the Permian-Triassic of the Sichuan Basin and the Lower Paleozoic of the Tarim Basin 被引量:9
18
作者 Huang Sijing Huang Keke +1 位作者 Lü Jie Lan Yefang 《Petroleum Science》 SCIE CAS CSCD 2014年第1期39-51,共13页
Study of dolomite texture can contribute to understanding the process of dolomitization.This research reports textures and homogenization temperatures of dolomites from the Permian-Triassic strata in the Sichuan Basin... Study of dolomite texture can contribute to understanding the process of dolomitization.This research reports textures and homogenization temperatures of dolomites from the Permian-Triassic strata in the Sichuan Basin and the Lower Paleozoic strata in the Tarim Basin,which provided insights into relationships between dolomite textures and their formation temperatures.Our results are summarized as follows:1) dolomites with well-preserved texture indicate low dolomitization temperature.However,in certain diagenetic environments,the hydrothermal dolomitization may completely or partially preserve the original texture of dolomites.2) The formation temperatures of non-planar dolomites are always higher than those of planar dolomites.3) The formation temperatures of dolomite cements are generally higher than those of replacive dolomites.4) Although the formation temperatures of saddle dolomite cements have a wide range,they show higher values than those of the planar subhedral to euhedral dolomite cements.Thus,saddle dolomites could generally be an indicator of high precipitation temperature.5) The fluid Mg/Ca ratio is another element controlling dolomite morphology.Micritic dolomites,which precipitate from hypersaline fluids with a high Mg/Ca ratio in a subaerial environment could also have features of non-planar anhedral crystal shape because of rapid nucleation and crystallization during dolomitization. 展开更多
关键词 The Permian-Triassic of the Sichuan Basin the Lower Paleozoic of the Tarim Basin dolomite textures formation temperature of dolomites
下载PDF
Geochemical characteristics and genetic model of dolomite reservoirs in the eastern margin of the Pre-Caspian Basin 被引量:13
19
作者 Wang Shuqin Zhao Lun +2 位作者 Cheng Xubin Fan Zifei He Ling 《Petroleum Science》 SCIE CAS CSCD 2012年第2期161-169,共9页
The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from... The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from -6.71‰ to 2.45‰, and average 0.063‰, obviously larger than -2.5‰, indicating low-temperature dolomite of evaporation origin. Stable strontium isotope ratios (87Sr/86Sr) range from 0.70829 to 0.70875 and average 0.708365, very consistent with 87Sr/86Sr ratios in Carboniferous seawater. Chemical analysis of Ca and Mg elements shows that the dolomite has 9.1 mole% excess Ca or even higher before stabilization. The degree of order of dolomite is medium–slightly poor, varying in a range of 0.336-0.504 and averaging 0.417. It suggests that the dolomite formed under near-surface conditions. There are two models for the origin of the Carboniferous KT-I dolomite reservoir. These are 1) the evaporation concentration – weathering crust model and 2) the shoal facies – seepage reflux model. The former is mainly developed in restricted platforms – evaporate platforms of restricted marine deposition environments with a representation of dolomite associated with gypsum and mudstone. The latter mainly formed in platform edge shoals and intra-platform shoals and is controlled by dolomitization due to high salinity sea water influx from adjacent restricted sea or evaporate platform. 展开更多
关键词 ISOTOPE dolomite CARBONIFEROUS genetic model eastern margin of Pre-Caspian Basin
下载PDF
Hydrothermal Dolomite in the Upper Sinian (Upper Proterozoic) Dengying Formation, East Sichuan Basin, China 被引量:12
20
作者 LIU Shugen HUANG Wenming +5 位作者 JANSA Luba F. WANG Guozhi SONG Guangyong ZHANG Changjun SUN Wei MA Wenxin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第5期1466-1487,共22页
Hydrothermal Dolomite (HTD) is present in the Upper Sinian (Upper Proterozoic) Dengying Formation, east Sichuan Basin, China. The strata are comprised by primary dolomite. The HTD has various textures, including z... Hydrothermal Dolomite (HTD) is present in the Upper Sinian (Upper Proterozoic) Dengying Formation, east Sichuan Basin, China. The strata are comprised by primary dolomite. The HTD has various textures, including zebra dolomite, subhorizontal sheet-like cavities filled by saddle dolomite and breccias cemented by saddle dolomites as well occur as a fill of veins and fractures. Also co-occur MVT type lead-zinc ores in the study area. The δ13C and δ18O isotopes of HTD in the Upper Sinian Dengying Formation are lighter than those of the host rocks, while STSr/86Sr is higher. The apparent difference in carbon, oxygen and strontium isotopes, especially the large difference in S7Sr/S6Sr isotopes ratio indicate crystallization from hot basinal and/or hydrothermal fluids. Saddle dolomite was precipitated at temperatures of 270-320℃. The diagenetic parasequences of mineral assemblage deposited in the Dengying Formation are: (1) dolomite host rock →sphalerite-galena-barite-fluorite; (2) dolomite host rock →saddle dolomite →quartz; (3) dolomite host rock →saddle dolomite→bitumen; (4) dolomite host rock →saddle dolomite →barite. The mean chemical composition of the host dolomite matrix and HTD didn't change much during hydrothermal process. The fluids forming the HTDs in the Dengying Formation were mixtures of freshwater from the unconformity at the top of Sinian, fluids from diagenetic compaction and hydrocarbon generation & expulsion from the Lower Cambrian Niutitang Formation mudstones or the Doushantuo Formation silty mudstones, and hydrothermal fluids from the basement. The hydrocarbon reservoirs associated with the HTD were mostly controlled by the basement faults and fractures and karsting processes at the unconformity separating Sinian and Cambrian strata. The hydrocarbon storage spaces of HTD included dissolved cavities and intercrystalline pores. Dissolution cavities are extensive at the top of Dengying Formation, up to about 46m below the unconformity between Sinian and Cambrian and were generated mainly during karstification. Hydrothermal alteration enhanced the reservoir property of the Dengying Formation dolomites with 3%-5% increase in porosity. No agreement has been reached why zebra dolomite occurs only in the Upper Sinian strata, which would indicate that HTD mineralization occurred during two different periods, each of them related to major extensional tectonic event. The early one related to the Xingkai taphrogenesis (Z2-C1) and the later one to the Emei taphrogenesis (D2-T2). But, all the data from saddle dolomite suggest that the predominant crystallization occurred during the latter event. 展开更多
关键词 Hydrothermal dolomite (HTD) Upper Sinian Series Dengying Formation Sichuan basin
下载PDF
上一页 1 2 146 下一页 到第
使用帮助 返回顶部