The first fully localized back-to-back DC intercon-nection project which connects Northwest and CentralChina power grids, 330-kV Lingbao Converter Stationhas now started construction for expansion.Lingbao back-to-back...The first fully localized back-to-back DC intercon-nection project which connects Northwest and CentralChina power grids, 330-kV Lingbao Converter Stationhas now started construction for expansion.Lingbao back-to-back converter station situated inLingbao City of Henan Province is the first DC intercon-展开更多
A new method that is applicable to local seismic networks to estimate the azimuth and slowness of teleseismic signals is introduced in the paper. The method is based on the correlation between the arrival times and st...A new method that is applicable to local seismic networks to estimate the azimuth and slowness of teleseismic signals is introduced in the paper. The method is based on the correlation between the arrival times and station positions. The analyzed results indicate that the azimuth and slowness of teleseismic signals can be accurately estimated by the method. Average errors for azimuth and slowness measurements obtained by this method using data of Xian Digital Telemetry Seismic Network are 2.0?and 0.34 s/(?, respectively. The conclusions drawn from this study indicate that this method may be very useful to interpret teleseismic records of local seismic networks.展开更多
文摘The first fully localized back-to-back DC intercon-nection project which connects Northwest and CentralChina power grids, 330-kV Lingbao Converter Stationhas now started construction for expansion.Lingbao back-to-back converter station situated inLingbao City of Henan Province is the first DC intercon-
基金Foundation of Verification Researches for Arm Control Technology
文摘A new method that is applicable to local seismic networks to estimate the azimuth and slowness of teleseismic signals is introduced in the paper. The method is based on the correlation between the arrival times and station positions. The analyzed results indicate that the azimuth and slowness of teleseismic signals can be accurately estimated by the method. Average errors for azimuth and slowness measurements obtained by this method using data of Xian Digital Telemetry Seismic Network are 2.0?and 0.34 s/(?, respectively. The conclusions drawn from this study indicate that this method may be very useful to interpret teleseismic records of local seismic networks.