The changes in humic substances (HS) is fundamental in detecting soil carbon sequestration mechanisms in natural and cultivated environments. Based on a long-term trial, the amounts of water dissolved substances (...The changes in humic substances (HS) is fundamental in detecting soil carbon sequestration mechanisms in natural and cultivated environments. Based on a long-term trial, the amounts of water dissolved substances (WSS), humic acid (HA), fulvic acid (FA) and humin (HU) were determined to explore the impact of long-term fertilization on HS. Increases in the amounts of WSS, HA, FA and HU were significant different among the treatments with manure. A significant correlation was found between the increased soil organic carbon (SOC) and HS (R^2=0.98, P〈0.01). The change in the E4/E6 ratio was significantly correlated with the increased SOC (R2=0.88, P〈0.01), HA (R^2=0.91, P〈0.01), FA (R^2=0.91, P〈0.01) and HU (R^2=0.88, P〈0.01). The cluster was mainly divided into two parts as manure fertilization and inorganic fertilization, based on the increases in HA, FA and HU. These results suggest that long term fertilization with manure favours carbon sequestration in HS and is mainly stabilized as HU, while the HA becomes more aliphatic. We conclude that increases in SOC can be linked to changes in the molecular characteristics of HS fractions under long term fertilization.展开更多
The relationship between long-term fertilization and cropland network for soil fertility and fertilizers in Loess soil of Shannxi soil fauna was studied at the station's experiment research Provincefrom Jul. 2001 to ...The relationship between long-term fertilization and cropland network for soil fertility and fertilizers in Loess soil of Shannxi soil fauna was studied at the station's experiment research Provincefrom Jul. 2001 to Oct. 2002. Six types of long-term fertilizer were carried out for this study including non-fertilizer (CK), abandonment (ABAND), nitrogenous and phosphors and potassium fertilizers combined (NPK), straw and NPK (SNPK), organic material and NPK (MNPK) and 1.5 times MNPK (1.5MNPK). 72 soil samples were collected and 5 495 species of cropland soil fauna obtained by handsorting and Cobb methods at 4 times, belonging to 6 Phyla, 11 Classes, 22 Orders, 2 Superfamilies, 61 Families and 35 Genera. The result showed that different fertilizer had significantly impacted on the cropland soil fauna (F = 2.24, P〈0.007). The number of the cropland soil fauna was related to the soil physicochemical properties caused by long-term fertilization. The result by principal component analysis, focusing on the number of 15 key soil fauna species group's diversity, evenness of community and the total soil fauna individuals indicated that the effects of SNPK, NPK, MNPK and 1.5MNPK were significantly different from that of the cropland soil fauna, in which, SNPK and NPK had the positive effect on cropland soil fauna, and MNPK and 1.5 MNPK had the negative affect, others could not be explained. By principal component I, the synthetic effect of different fertilization on the total soil fauna individuals and the group was most significant, and the effect was little on evenness and diversity. By value of eigenvectors, the maximum one was 9.6248, and the minimum one was - 1.0904, that means the 6 types of fertilization did not affect evenly the cropland soil fauna.展开更多
基金supported by the National Natural Science Foundation of China (30873470)the National Special Research Fund for Non-Profit Sector (Agriculture) (201203030)the grant from Qingdao Agricultural University, China (631214)
文摘The changes in humic substances (HS) is fundamental in detecting soil carbon sequestration mechanisms in natural and cultivated environments. Based on a long-term trial, the amounts of water dissolved substances (WSS), humic acid (HA), fulvic acid (FA) and humin (HU) were determined to explore the impact of long-term fertilization on HS. Increases in the amounts of WSS, HA, FA and HU were significant different among the treatments with manure. A significant correlation was found between the increased soil organic carbon (SOC) and HS (R^2=0.98, P〈0.01). The change in the E4/E6 ratio was significantly correlated with the increased SOC (R2=0.88, P〈0.01), HA (R^2=0.91, P〈0.01), FA (R^2=0.91, P〈0.01) and HU (R^2=0.88, P〈0.01). The cluster was mainly divided into two parts as manure fertilization and inorganic fertilization, based on the increases in HA, FA and HU. These results suggest that long term fertilization with manure favours carbon sequestration in HS and is mainly stabilized as HU, while the HA becomes more aliphatic. We conclude that increases in SOC can be linked to changes in the molecular characteristics of HS fractions under long term fertilization.
文摘The relationship between long-term fertilization and cropland network for soil fertility and fertilizers in Loess soil of Shannxi soil fauna was studied at the station's experiment research Provincefrom Jul. 2001 to Oct. 2002. Six types of long-term fertilizer were carried out for this study including non-fertilizer (CK), abandonment (ABAND), nitrogenous and phosphors and potassium fertilizers combined (NPK), straw and NPK (SNPK), organic material and NPK (MNPK) and 1.5 times MNPK (1.5MNPK). 72 soil samples were collected and 5 495 species of cropland soil fauna obtained by handsorting and Cobb methods at 4 times, belonging to 6 Phyla, 11 Classes, 22 Orders, 2 Superfamilies, 61 Families and 35 Genera. The result showed that different fertilizer had significantly impacted on the cropland soil fauna (F = 2.24, P〈0.007). The number of the cropland soil fauna was related to the soil physicochemical properties caused by long-term fertilization. The result by principal component analysis, focusing on the number of 15 key soil fauna species group's diversity, evenness of community and the total soil fauna individuals indicated that the effects of SNPK, NPK, MNPK and 1.5MNPK were significantly different from that of the cropland soil fauna, in which, SNPK and NPK had the positive effect on cropland soil fauna, and MNPK and 1.5 MNPK had the negative affect, others could not be explained. By principal component I, the synthetic effect of different fertilization on the total soil fauna individuals and the group was most significant, and the effect was little on evenness and diversity. By value of eigenvectors, the maximum one was 9.6248, and the minimum one was - 1.0904, that means the 6 types of fertilization did not affect evenly the cropland soil fauna.