A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radi...A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radial and axial magnetic pressure acting on the tube, the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM, The radial magnetic pressure on the tube decreases from the center to the tube end, axial magnetic pressure is greater near the location equal to the coil height and slight in the other region. The radial displacement of deformed workpicces is distributed uniformly near the tube center and decreases from the center to the end; Deformation from the location equal to coil height to the tube end is little. This distribution is consistent with the distribution of radial pressure; Effect of the axial magnetic pressure on deformation can be ignored, The calculated results show well agreements with the experimental results.展开更多
For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics...For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics(CSD)module is introduced to handle blade flexibility.In CFD module,dual time-stepping algorithm is employed in temporal discretization,Jameson two-order central difference(JST)scheme is adopted in spatial discretization and B-L turbulent model is used to illustrate the viscous effect.The CSD module is developed based on Hamilton′s variational principles and moderate deflection beam theory.Grid deformation is implemented using algebraic method through coordinate transformations to achieve deflections with high quality and efficiency.A CFD/CSD loose coupling strategy is developed to transfer information between rotor flowfield and blade structure.The CFD and the CSD modules are verified seperately.Then the CFD/CSD loose coupling is adopted in airloads prediction of UH-60A rotor under high speed forward flight condition.The calculated results agree well with test data.Finally,effects of torsional stiffness properties on airloads of rotors with different tip swept angles(from 10° forward to 30° backward)are investigated.The results are evaluated through pressure distribution and airloads variation,and some meaningful conclusions are drawn the moderated shock wave strength and pressure gradient caused by varied tip swept angle and structural properties.展开更多
A hindcast simulation of 75 typhoons and winter monsoons which affected the coastal areas of Korean Peninsula is performed by use of a third generation ocean wave prediction model, WAM-cycle 4 model, loosely coupled w...A hindcast simulation of 75 typhoons and winter monsoons which affected the coastal areas of Korean Peninsula is performed by use of a third generation ocean wave prediction model, WAM-cycle 4 model, loosely coupled with a com-bined tide and surge model. Typhoon wind fields are derived from the planetary marine boundary layer model for effective neutral winds embedding the vortical storm wind from the parameterized Rankin vortex type model in the limited areas of the overall modeled region. The hindcasted results illustrate that significant wave heights (SWH) considering the wave-tide-surge coupled process are significantly different from the results via the decoupled case especially in the region of the estuaries of the Changjiang Estuary, The Hangzhou Bay, and the southwestern tip of Korean Peninsula. This extensive model simulation is the first attempt to investigate the strong wave-tide-surge interaction for the shallow depth area along the coasts of the Yellow Sea and the East China Sea Continental shelf.展开更多
With the rapid development of information technology, adopting advanced distributed computing technology to construct robot control system is becoming an effective approach gradually. This paper proposes a distributed...With the rapid development of information technology, adopting advanced distributed computing technology to construct robot control system is becoming an effective approach gradually. This paper proposes a distributed loosely coupled software architecture based on Agent and CORBA to control multiple robots. This model provides the robot user with agent control units at the semantic level and CORBA provides function interfaces to agent at the syntax level, which shows a good adaptability, flexibility and transparence.展开更多
At present,the optimization of the plunger mechanism is shale gas wells is mostly based on empirical methods,which lack a relevant rationale and often are not able to deal with the quick variations experienced by the ...At present,the optimization of the plunger mechanism is shale gas wells is mostly based on empirical methods,which lack a relevant rationale and often are not able to deal with the quick variations experienced by the production parameters of shale gas wells in comparison to conventional gas wells.In order to mitigate this issue,in the present work,a model is proposed to loosely couple the dynamics of gas inflow into shale gas wells with the dynamics of the liquid inflow.Starting from the flow law that accounts for the four stages of movement of the plunger,a dynamic model of the plunger lift based on the real wellbore trajectory is introduced.The model is then tested against 5 example wells,and it is shown that the accuracy level is higher than 90%.The well‘switch’,optimized on the basis of simulations based on such a model,is tested through on-site experiments.It is shown that,compared with the original switch configuration,the average production of the sample well can be increased by about 15%.展开更多
The simulations and potential forecasting of dust storms are of significant interest to public health and environment sciences.Dust storms have interannual variabilities and are typical disruptive events.The computing...The simulations and potential forecasting of dust storms are of significant interest to public health and environment sciences.Dust storms have interannual variabilities and are typical disruptive events.The computing platform for a dust storm forecasting operational system should support a disruptive fashion by scaling up to enable high-resolution forecasting and massive public access when dust storms come and scaling down when no dust storm events occur to save energy and costs.With the capability of providing a large,elastic,and virtualized pool of computational resources,cloud computing becomes a new and advantageous computing paradigm to resolve scientific problems traditionally requiring a large-scale and high-performance cluster.This paper examines the viability for cloud computing to support dust storm forecasting.Through a holistic study by systematically comparing cloud computing using Amazon EC2 to traditional high performance computing(HPC)cluster,we find that cloud computing is emerging as a credible solution for(1)supporting dust storm forecasting in spinning off a large group of computing resources in a few minutes to satisfy the disruptive computing requirements of dust storm forecasting,(2)performing high-resolution dust storm forecasting when required,(3)supporting concurrent computing requirements,(4)supporting real dust storm event forecasting for a large geographic domain by using recent dust storm event in Phoniex,05 July 2011 as example,and(5)reducing cost by maintaining low computing support when there is no dust storm events while invoking a large amount of computing resource to perform high-resolution forecasting and responding to large amount of concurrent public accesses.展开更多
文摘A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radial and axial magnetic pressure acting on the tube, the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM, The radial magnetic pressure on the tube decreases from the center to the tube end, axial magnetic pressure is greater near the location equal to the coil height and slight in the other region. The radial displacement of deformed workpicces is distributed uniformly near the tube center and decreases from the center to the end; Deformation from the location equal to coil height to the tube end is little. This distribution is consistent with the distribution of radial pressure; Effect of the axial magnetic pressure on deformation can be ignored, The calculated results show well agreements with the experimental results.
文摘For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics(CSD)module is introduced to handle blade flexibility.In CFD module,dual time-stepping algorithm is employed in temporal discretization,Jameson two-order central difference(JST)scheme is adopted in spatial discretization and B-L turbulent model is used to illustrate the viscous effect.The CSD module is developed based on Hamilton′s variational principles and moderate deflection beam theory.Grid deformation is implemented using algebraic method through coordinate transformations to achieve deflections with high quality and efficiency.A CFD/CSD loose coupling strategy is developed to transfer information between rotor flowfield and blade structure.The CFD and the CSD modules are verified seperately.Then the CFD/CSD loose coupling is adopted in airloads prediction of UH-60A rotor under high speed forward flight condition.The calculated results agree well with test data.Finally,effects of torsional stiffness properties on airloads of rotors with different tip swept angles(from 10° forward to 30° backward)are investigated.The results are evaluated through pressure distribution and airloads variation,and some meaningful conclusions are drawn the moderated shock wave strength and pressure gradient caused by varied tip swept angle and structural properties.
基金The research is a part of the second phase(1998-2000)of Natural Hazard Prevention Research funded by the Ministry of Science and Technology through Korea Institute of Science and Technology Evaluation and Planning (KISTEP) and Group for Natural Hazard Pr
文摘A hindcast simulation of 75 typhoons and winter monsoons which affected the coastal areas of Korean Peninsula is performed by use of a third generation ocean wave prediction model, WAM-cycle 4 model, loosely coupled with a com-bined tide and surge model. Typhoon wind fields are derived from the planetary marine boundary layer model for effective neutral winds embedding the vortical storm wind from the parameterized Rankin vortex type model in the limited areas of the overall modeled region. The hindcasted results illustrate that significant wave heights (SWH) considering the wave-tide-surge coupled process are significantly different from the results via the decoupled case especially in the region of the estuaries of the Changjiang Estuary, The Hangzhou Bay, and the southwestern tip of Korean Peninsula. This extensive model simulation is the first attempt to investigate the strong wave-tide-surge interaction for the shallow depth area along the coasts of the Yellow Sea and the East China Sea Continental shelf.
文摘With the rapid development of information technology, adopting advanced distributed computing technology to construct robot control system is becoming an effective approach gradually. This paper proposes a distributed loosely coupled software architecture based on Agent and CORBA to control multiple robots. This model provides the robot user with agent control units at the semantic level and CORBA provides function interfaces to agent at the syntax level, which shows a good adaptability, flexibility and transparence.
基金The authors would like to acknowledge the National Natural Science Fund Project(62173049)for Key Projectthe Open Fund Project“Study on Transient Flow Mechanism of Fluid Accumulation in Shale Gas Wells”of the Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology.
文摘At present,the optimization of the plunger mechanism is shale gas wells is mostly based on empirical methods,which lack a relevant rationale and often are not able to deal with the quick variations experienced by the production parameters of shale gas wells in comparison to conventional gas wells.In order to mitigate this issue,in the present work,a model is proposed to loosely couple the dynamics of gas inflow into shale gas wells with the dynamics of the liquid inflow.Starting from the flow law that accounts for the four stages of movement of the plunger,a dynamic model of the plunger lift based on the real wellbore trajectory is introduced.The model is then tested against 5 example wells,and it is shown that the accuracy level is higher than 90%.The well‘switch’,optimized on the basis of simulations based on such a model,is tested through on-site experiments.It is shown that,compared with the original switch configuration,the average production of the sample well can be increased by about 15%.
基金Research reported is supported by NSF(CSR-1117300 and IIP-1160979)NASA(NNX07AD99G)Microsoft Research.
文摘The simulations and potential forecasting of dust storms are of significant interest to public health and environment sciences.Dust storms have interannual variabilities and are typical disruptive events.The computing platform for a dust storm forecasting operational system should support a disruptive fashion by scaling up to enable high-resolution forecasting and massive public access when dust storms come and scaling down when no dust storm events occur to save energy and costs.With the capability of providing a large,elastic,and virtualized pool of computational resources,cloud computing becomes a new and advantageous computing paradigm to resolve scientific problems traditionally requiring a large-scale and high-performance cluster.This paper examines the viability for cloud computing to support dust storm forecasting.Through a holistic study by systematically comparing cloud computing using Amazon EC2 to traditional high performance computing(HPC)cluster,we find that cloud computing is emerging as a credible solution for(1)supporting dust storm forecasting in spinning off a large group of computing resources in a few minutes to satisfy the disruptive computing requirements of dust storm forecasting,(2)performing high-resolution dust storm forecasting when required,(3)supporting concurrent computing requirements,(4)supporting real dust storm event forecasting for a large geographic domain by using recent dust storm event in Phoniex,05 July 2011 as example,and(5)reducing cost by maintaining low computing support when there is no dust storm events while invoking a large amount of computing resource to perform high-resolution forecasting and responding to large amount of concurrent public accesses.