TiO2 doped with C, N and S (TCNS photocatalyst) was prepared by hydrolysis process using titanium iso-propoxide and thiourea. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron micro...TiO2 doped with C, N and S (TCNS photocatalyst) was prepared by hydrolysis process using titanium iso-propoxide and thiourea. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photo electron spectroscopy (XPS), BET surface area, FTIR and diffuse reflectance spectra (DRS). The results showed that the prepared catalysts are anatase type and nanosized par-ticles. The catalysts exhibited stronger absorption in the visible light region with a red shift in the adsorption edge. The photocatalytic activity of TCNS photocatalysts was evaluated by the photocatalytic degradation of isoproturon pesticide in aqueous solution. In the present study the maximum activity was achieved for TCNS5 catalyst at neutral pH with 1 g L-1 catalyst amount and at 1.14 x 10-4 M concentration of the pesticide solution. The TCNS photocatalysts showed higher phtocatalytic activity under solar light irradiation. This is attributed to the synergetic effects of red shift in the absorption edge, higher surface area and the inhibition of charge carrier recombination process.展开更多
Selective catalytic reduction technology using NH3 as a reducing agent(NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb mo...Selective catalytic reduction technology using NH3 as a reducing agent(NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer(XRD), Brunauer-Emmett-Teller(BET), Transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FT-IR), UV-Vis diffuse reflectance spectroscopy(UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction(H2-TPR). The catalytic activities of V5 CexS by/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5 CexS by/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400℃, the V5 CexS by/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210℃, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased.展开更多
文摘TiO2 doped with C, N and S (TCNS photocatalyst) was prepared by hydrolysis process using titanium iso-propoxide and thiourea. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photo electron spectroscopy (XPS), BET surface area, FTIR and diffuse reflectance spectra (DRS). The results showed that the prepared catalysts are anatase type and nanosized par-ticles. The catalysts exhibited stronger absorption in the visible light region with a red shift in the adsorption edge. The photocatalytic activity of TCNS photocatalysts was evaluated by the photocatalytic degradation of isoproturon pesticide in aqueous solution. In the present study the maximum activity was achieved for TCNS5 catalyst at neutral pH with 1 g L-1 catalyst amount and at 1.14 x 10-4 M concentration of the pesticide solution. The TCNS photocatalysts showed higher phtocatalytic activity under solar light irradiation. This is attributed to the synergetic effects of red shift in the absorption edge, higher surface area and the inhibition of charge carrier recombination process.
基金supported by the Natural Science Foundation of China (Nos. 21376261, 21173270)the Beijing Natural Science Foundation (2142027)+1 种基金Doctor select Foundation (No. 20130007110007)the National Hi-Tech Research and Development Program (863) of China (No. 2013AA065302)
文摘Selective catalytic reduction technology using NH3 as a reducing agent(NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer(XRD), Brunauer-Emmett-Teller(BET), Transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FT-IR), UV-Vis diffuse reflectance spectroscopy(UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction(H2-TPR). The catalytic activities of V5 CexS by/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5 CexS by/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400℃, the V5 CexS by/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210℃, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased.