Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons...Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.展开更多
The firmness of table grape berries is a crucial quality parameter. Despite extensive research on postharvest fruit softening, its precise molecular mechanisms remain elusive. To enhance our comprehension of the under...The firmness of table grape berries is a crucial quality parameter. Despite extensive research on postharvest fruit softening, its precise molecular mechanisms remain elusive. To enhance our comprehension of the underlying molecular factors, we initially identified differentially expressed genes(DEGs) by comparing the transcriptomes of folic acid(FA)-treated and water-treated(CK) berries at different time points. We then analyzed the sequences to detect alternatively spliced(AS) genes associated with postharvest softening. A total of 2,559 DEGs were identified and categorized into four subclusters based on their expression patterns, with subcluster-4 genes exhibiting higher expression in the CK group compared with the FA treatment group. There were 1,045 AS-associated genes specific to FA-treated berries and 1,042 in the CK-treated berries, respectively. Gene Ontology(GO) annotation indicated that the AS-associated genes in CK-treated berries were predominantly enriched in cell wall metabolic processes,particularly cell wall degradation processes. Through a comparison between treatment-associated AS genes and subcluster-4 DEGs, we identified eight genes, including Pectinesterase 2(VvPE2, Vitvi15g00704), which encodes a cell wall-degrading enzyme and was predicted to undergo an A3SS event. The reverse transcription polymerase chain reaction further confirmed the presence of a truncated transcript variant of VvPE2 in the FA-treated berries.Our study provides a comprehensive analysis of AS events in postharvest grape berries using transcriptome sequencing and underscores the pivotal role of VvPE2 during the postharvest storage of grape berries.展开更多
The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardn...The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2.展开更多
The amino poly-siloxane was modified with self-made polyether silicones by the crafts of emulsion polymerization. We studied the emulsifier, the dosage of emulsifier initiator, polyether/silane coupling agent, pH valu...The amino poly-siloxane was modified with self-made polyether silicones by the crafts of emulsion polymerization. We studied the emulsifier, the dosage of emulsifier initiator, polyether/silane coupling agent, pH value. There are some results of the research indicated in the following. First, there are many factors for the hydrophilic amino-silicone softener both on the polymerization process and the performance, such as the proportion and amount of emulsifier, initiator dosage, the mass ratio of the polyether and hydrogen silicone oil, the choice of silicone coupling agent, and the ratio and dosage of polyether silicones silane coupling agent. Second, the amount of hydrogen of the hydrogen silicones and the choice of catalyst are the key points on the synthesis of polyether silicones. The amount of hydrogen should be low and the catalyst must be economical and efficient and its introduction should be small and times, other more the holding time is not too long. The next one is that, in the process of hydrolysis of silane coupling agent, we need some acid to adjust pH value, or they will be broken down. The most important one but not the last is that the epoxy group can improve the products low-temperature supple and the persistence of the finishing fabric, furthermore it can reduce yellowing and has a good stability of the inorganic salt, however, it will be destroyed if the reaction temperature for epoxy is too high. What’s more, it is very economical and environmental that the process of emulsion is simple and with less emulsifier.展开更多
Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-domina...Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.展开更多
Chemical softener (Cepreton UN) is used to soften the cellulosic fiber (cotton) in the textile industries to make clothes better to touch. Therefore, this study investigated the effects of Cepreton UN on both physical...Chemical softener (Cepreton UN) is used to soften the cellulosic fiber (cotton) in the textile industries to make clothes better to touch. Therefore, this study investigated the effects of Cepreton UN on both physical (length, aspect ratio, contact angle, and moisture regain) and mechanical (load at break, elongation at break, tensile stress, young’s modulus, and tenacity) properties of the lignocellulosic canola (HYREAR 3) fibers extracted from narrow, medium, and wide stems. ANOVA showed that fiber diameter had strong effects on elongation at break, load at break, tensile stress, young’s modulus, and aspect ratio for all fibers. Corrgram values showed that tensile stress, young’s modulus, and aspect ratio were negatively correlated to fiber diameter whereas load at break and tenacity were mostly positively correlated to fiber diameter. The fibers were treated with 2% and 10% Cepreton UN and compared with control fibers. In most cases, the fiber diameter was decreased in both 2% and 10% treated medium stem fibers. The mean values of elongation at break, load at break, tenacity, and contact angle were decreased for 10% and increased for 2% and the mean values of tensile stress, young’s modulus, and aspect ratio were decreased for 2% and increased for 10% treated medium stem fibers. Moisture regain (%) mostly decreased for 2%, and increased for 10% treated fibers. Low pH (4.5) had an almost similar effect on fibers as 2% Cepreton UN. Overall, 2% Cepreton UN treatment is found to be better than 10% to make canola fibers less stiff and low pH was found to be an alternative softener treatment strategy.展开更多
Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by opti...Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by optical microscopy,scanning electron microscopy,electron back-scattered diffraction and transmission electron microscopy.The results show that true stress first rises to the peak point and then drops to the bottom value and increases again with further increasing strain at each temperature.Twinning dynamic recrystallization(DRX)and continuous DRX contribute to the formation of new fine grains at temperatures 450∼475℃ when the restoration is caused by both DRX and texture change due to extension twinning,resulting in the larger softening degrees compared with the softening effects owing to continuous DRX and discontinuous DRX at 500∼550℃ when twinning activation is suppressed.500℃ is the transition temperature denoting a significant decline in the contribution of twinning and TDRX to the strain with increasing temperature.The cuboid-shape phase exists in both homogenized and compressed samples,while the compositions are varied.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.
基金financially supported by the National Natural Science Foundation of China(32202560 and 32302470)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province+6 种基金China(21IRTSTHN021)the Natural Science Foundation of HenanChina(232300421112)the Program for Science&Technology Innovation Talents in Universities of Henan ProvinceChina(21HASTIT035)the PhD Research Startup Foundation of Henan University of Science and TechnologyChina(13480068 and 13480067)。
文摘The firmness of table grape berries is a crucial quality parameter. Despite extensive research on postharvest fruit softening, its precise molecular mechanisms remain elusive. To enhance our comprehension of the underlying molecular factors, we initially identified differentially expressed genes(DEGs) by comparing the transcriptomes of folic acid(FA)-treated and water-treated(CK) berries at different time points. We then analyzed the sequences to detect alternatively spliced(AS) genes associated with postharvest softening. A total of 2,559 DEGs were identified and categorized into four subclusters based on their expression patterns, with subcluster-4 genes exhibiting higher expression in the CK group compared with the FA treatment group. There were 1,045 AS-associated genes specific to FA-treated berries and 1,042 in the CK-treated berries, respectively. Gene Ontology(GO) annotation indicated that the AS-associated genes in CK-treated berries were predominantly enriched in cell wall metabolic processes,particularly cell wall degradation processes. Through a comparison between treatment-associated AS genes and subcluster-4 DEGs, we identified eight genes, including Pectinesterase 2(VvPE2, Vitvi15g00704), which encodes a cell wall-degrading enzyme and was predicted to undergo an A3SS event. The reverse transcription polymerase chain reaction further confirmed the presence of a truncated transcript variant of VvPE2 in the FA-treated berries.Our study provides a comprehensive analysis of AS events in postharvest grape berries using transcriptome sequencing and underscores the pivotal role of VvPE2 during the postharvest storage of grape berries.
基金financial supports from the Department of Science and Technology and other Provincial and Ministerial Level Projects,China(No.204306800086)Science and Technology Projects of Ganzhou Science and Technology Bureau,China(No.204301000194)the Science and Technology Project of Jiangxi Provincial Department of Education,China(No.204201400853)。
文摘The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2.
文摘The amino poly-siloxane was modified with self-made polyether silicones by the crafts of emulsion polymerization. We studied the emulsifier, the dosage of emulsifier initiator, polyether/silane coupling agent, pH value. There are some results of the research indicated in the following. First, there are many factors for the hydrophilic amino-silicone softener both on the polymerization process and the performance, such as the proportion and amount of emulsifier, initiator dosage, the mass ratio of the polyether and hydrogen silicone oil, the choice of silicone coupling agent, and the ratio and dosage of polyether silicones silane coupling agent. Second, the amount of hydrogen of the hydrogen silicones and the choice of catalyst are the key points on the synthesis of polyether silicones. The amount of hydrogen should be low and the catalyst must be economical and efficient and its introduction should be small and times, other more the holding time is not too long. The next one is that, in the process of hydrolysis of silane coupling agent, we need some acid to adjust pH value, or they will be broken down. The most important one but not the last is that the epoxy group can improve the products low-temperature supple and the persistence of the finishing fabric, furthermore it can reduce yellowing and has a good stability of the inorganic salt, however, it will be destroyed if the reaction temperature for epoxy is too high. What’s more, it is very economical and environmental that the process of emulsion is simple and with less emulsifier.
基金supported by the Fundamental Research Program of the Korea Institute of Materials Science (PNK8330)the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (2020M3H4A3081843)。
文摘Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.
文摘Chemical softener (Cepreton UN) is used to soften the cellulosic fiber (cotton) in the textile industries to make clothes better to touch. Therefore, this study investigated the effects of Cepreton UN on both physical (length, aspect ratio, contact angle, and moisture regain) and mechanical (load at break, elongation at break, tensile stress, young’s modulus, and tenacity) properties of the lignocellulosic canola (HYREAR 3) fibers extracted from narrow, medium, and wide stems. ANOVA showed that fiber diameter had strong effects on elongation at break, load at break, tensile stress, young’s modulus, and aspect ratio for all fibers. Corrgram values showed that tensile stress, young’s modulus, and aspect ratio were negatively correlated to fiber diameter whereas load at break and tenacity were mostly positively correlated to fiber diameter. The fibers were treated with 2% and 10% Cepreton UN and compared with control fibers. In most cases, the fiber diameter was decreased in both 2% and 10% treated medium stem fibers. The mean values of elongation at break, load at break, tenacity, and contact angle were decreased for 10% and increased for 2% and the mean values of tensile stress, young’s modulus, and aspect ratio were decreased for 2% and increased for 10% treated medium stem fibers. Moisture regain (%) mostly decreased for 2%, and increased for 10% treated fibers. Low pH (4.5) had an almost similar effect on fibers as 2% Cepreton UN. Overall, 2% Cepreton UN treatment is found to be better than 10% to make canola fibers less stiff and low pH was found to be an alternative softener treatment strategy.
基金This work was supported by the Changsha University Talent Introduction Project(50800-92808)the Excellent youth project of Hunan Provincial Department of Education(19B055,18B418,19C0156)the Natural Science Foundation of Hunan Province of China(2020JJ4645).
文摘Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by optical microscopy,scanning electron microscopy,electron back-scattered diffraction and transmission electron microscopy.The results show that true stress first rises to the peak point and then drops to the bottom value and increases again with further increasing strain at each temperature.Twinning dynamic recrystallization(DRX)and continuous DRX contribute to the formation of new fine grains at temperatures 450∼475℃ when the restoration is caused by both DRX and texture change due to extension twinning,resulting in the larger softening degrees compared with the softening effects owing to continuous DRX and discontinuous DRX at 500∼550℃ when twinning activation is suppressed.500℃ is the transition temperature denoting a significant decline in the contribution of twinning and TDRX to the strain with increasing temperature.The cuboid-shape phase exists in both homogenized and compressed samples,while the compositions are varied.