The stability of the Schwarzschild black hole is restudied in the Painlevé coordinates. Using the Painlevé time coordinate to define the initial time, we reconsider the odd perturbation and find that the Sch...The stability of the Schwarzschild black hole is restudied in the Painlevé coordinates. Using the Painlevé time coordinate to define the initial time, we reconsider the odd perturbation and find that the Schwarzschild black hole in the Painlevé coordinates is unstable. The Painlevé metric in this paper corresponds to the white-hole-connected region of the Schwarzschild black hole (r 〉 2m) and the odd perturbation may be regarded as the angular perturbation. Therefore, the white-hole-connected region of the Schwarzschild black hole is unstable with respect to the rotating perturbation.展开更多
In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. I...In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. In this article, starting from this correct Schwarzschild metric, I also propose corrections to the other traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics on the basis of the fact that these metrics should be equal to the correct Schwarzschild metric in the borderline case in which they reduce to the case described by this metric. In this way, we see that, like the correct Schwarzschild metric, also the correct Reissner-Nordstrøm, Kerr and Kerr-Newman metrics do not present any event horizon (and therefore do not present any black hole) unlike the traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10475013, 10373003 and 10375087), the National Basic Research Program (Grant No 2004CB318000) and the Post-Doctor Foundation of China.
文摘The stability of the Schwarzschild black hole is restudied in the Painlevé coordinates. Using the Painlevé time coordinate to define the initial time, we reconsider the odd perturbation and find that the Schwarzschild black hole in the Painlevé coordinates is unstable. The Painlevé metric in this paper corresponds to the white-hole-connected region of the Schwarzschild black hole (r 〉 2m) and the odd perturbation may be regarded as the angular perturbation. Therefore, the white-hole-connected region of the Schwarzschild black hole is unstable with respect to the rotating perturbation.
文摘In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. In this article, starting from this correct Schwarzschild metric, I also propose corrections to the other traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics on the basis of the fact that these metrics should be equal to the correct Schwarzschild metric in the borderline case in which they reduce to the case described by this metric. In this way, we see that, like the correct Schwarzschild metric, also the correct Reissner-Nordstrøm, Kerr and Kerr-Newman metrics do not present any event horizon (and therefore do not present any black hole) unlike the traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics.