首先给出了May谱序列E_1^(s,t,u)项的几个结果,然后利用这些结果和关于Ext_P^(s,t)(Z_p,Z_p)的一个估计(P为由mod p Steenrod代数A的所有循环缩减幂P^i(i≥0)生成的子代数)得出了乘积(?)t (?)g0∈Ext_A^(*,*)(Z_p,Z_p)(3≤t<p-2)在Ad...首先给出了May谱序列E_1^(s,t,u)项的几个结果,然后利用这些结果和关于Ext_P^(s,t)(Z_p,Z_p)的一个估计(P为由mod p Steenrod代数A的所有循环缩减幂P^i(i≥0)生成的子代数)得出了乘积(?)t (?)g0∈Ext_A^(*,*)(Z_p,Z_p)(3≤t<p-2)在Adams谱序列的收敛性。其中g0∈Ext_A^(2,pq+2q)(Z_p,Z_p),(?)∈Ext_A^(3,p^2q+2pq)(Z_p,Z_p).展开更多
文摘首先给出了May谱序列E_1^(s,t,u)项的几个结果,然后利用这些结果和关于Ext_P^(s,t)(Z_p,Z_p)的一个估计(P为由mod p Steenrod代数A的所有循环缩减幂P^i(i≥0)生成的子代数)得出了乘积(?)t (?)g0∈Ext_A^(*,*)(Z_p,Z_p)(3≤t<p-2)在Adams谱序列的收敛性。其中g0∈Ext_A^(2,pq+2q)(Z_p,Z_p),(?)∈Ext_A^(3,p^2q+2pq)(Z_p,Z_p).