体声波(BAW)谐振器受到质量负载时,谐振器的Butterworth Van Dyke(BVD)电路模型中会增加1个质量负载等效电感,为得到该电感与负载质量的量化关系,以便对BAW传感器进行系统行为仿真,该文提出了3D多物理场-等效电路仿真对比建模的方法。...体声波(BAW)谐振器受到质量负载时,谐振器的Butterworth Van Dyke(BVD)电路模型中会增加1个质量负载等效电感,为得到该电感与负载质量的量化关系,以便对BAW传感器进行系统行为仿真,该文提出了3D多物理场-等效电路仿真对比建模的方法。通过对比COMSOL Multiphysics软件的3D多物理场仿真结果与ADS的等效电路仿真结果得到质量负载等效电感和负载质量的量化关系。以一个薄膜体声波谐振器(FBAR)为例,介绍了该方法的详细过程,并得到案例中的量化关系为:质量负载等效电感每增加1nH,负载质量增加0.1ng。最后将该量化关系应用于基于Pierce振荡器的BAW传感器检测电路的系统级行为仿真。仿真结果表明,质量负载等效电感每增加1nH,振荡频率减小6 MHz,即振荡频率的变化情况与等效电路仿真结果相吻合,从而验证了该检测电路能用于BAW传感器的频率信号的检测。该量化方法同样适用于石英晶体微天平(QCM)。展开更多
文摘体声波(BAW)谐振器受到质量负载时,谐振器的Butterworth Van Dyke(BVD)电路模型中会增加1个质量负载等效电感,为得到该电感与负载质量的量化关系,以便对BAW传感器进行系统行为仿真,该文提出了3D多物理场-等效电路仿真对比建模的方法。通过对比COMSOL Multiphysics软件的3D多物理场仿真结果与ADS的等效电路仿真结果得到质量负载等效电感和负载质量的量化关系。以一个薄膜体声波谐振器(FBAR)为例,介绍了该方法的详细过程,并得到案例中的量化关系为:质量负载等效电感每增加1nH,负载质量增加0.1ng。最后将该量化关系应用于基于Pierce振荡器的BAW传感器检测电路的系统级行为仿真。仿真结果表明,质量负载等效电感每增加1nH,振荡频率减小6 MHz,即振荡频率的变化情况与等效电路仿真结果相吻合,从而验证了该检测电路能用于BAW传感器的频率信号的检测。该量化方法同样适用于石英晶体微天平(QCM)。