期刊文献+
共找到14,809篇文章
< 1 2 250 >
每页显示 20 50 100
弓形虫MIC1蛋白在杆状病毒系统中的表达及活性分析
1
作者 李响 张小涵 +5 位作者 李美琪 陈冉 冯颖 李林 桑晓宇 杨娜 《华中农业大学学报》 CAS CSCD 北大核心 2024年第1期210-218,共9页
为构建可溶性表达弓形虫MIC1蛋白质的重组杆状病毒株并分析重组蛋白质的活性,通过PCR扩增弓形虫mic1基因的编码序列并连接到pFastBac 1质粒中,将重组的转移质粒转化DH10Bac感受态细胞,通过蓝白斑筛选获得重组杆粒,转染Sf9细胞后连续培养... 为构建可溶性表达弓形虫MIC1蛋白质的重组杆状病毒株并分析重组蛋白质的活性,通过PCR扩增弓形虫mic1基因的编码序列并连接到pFastBac 1质粒中,将重组的转移质粒转化DH10Bac感受态细胞,通过蓝白斑筛选获得重组杆粒,转染Sf9细胞后连续培养3代获得重组杆状病毒株。结果显示,Sf9细胞在感染后的第3天出现典型的细胞病变;间接免疫荧光和Western blot试验结果表明MIC1重组蛋白质在感染的Sf9细胞中成功可溶性表达;纯化的MIC1重组蛋白质不仅具有结合唾液酸乳糖的能力,同时能够刺激Balb/c小鼠产生较高水平的特异性抗体(>1∶25600)。以上结果表明,通过杆状病毒表达系统可获得具有生物学活性的弓形虫MIC1重组蛋白质。 展开更多
关键词 弓形虫 mic1蛋白 杆状病毒系统 活性分析
下载PDF
In situ direct reprogramming of astrocytes to neurons via polypyrimidine tract-binding protein 1 knockdown in a mouse model of ischemic stroke
2
作者 Meng Yuan Yao Tang +2 位作者 Tianwen Huang Lining Ke En Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2240-2248,共9页
In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been sho... In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been shown to reprogram astrocytes to functional neurons in situ. In this study, we used AAV-PHP.e B-GFAP-sh PTB to knockdown PTB in a mouse model of ischemic stroke induced by endothelin-1, and investigated the effects of GFAP-sh PTB-mediated direct reprogramming to neurons. Our results showed that in the mouse model of ischemic stroke, PTB knockdown effectively reprogrammed GFAP-positive cells to neurons in ischemic foci, restored neural tissue structure, reduced inflammatory response, and improved behavioral function. These findings validate the effectiveness of in situ transdifferentiation of astrocytes, and suggest that the approach may be a promising strategy for stroke treatment. 展开更多
关键词 astrocyte in situ direct reprogramming ischemic stroke miR-30 based shRNA neuron polypyrimidine tract-binding protein 1 TRANSDIFFERENTIATION
下载PDF
Low Selenium and Low Protein Exacerbate Myocardial Damage in Keshan Disease by Affecting the PINK1/Parkin-mediated Mitochondrial Autophagy Pathway
3
作者 Li-wei ZHANG Hong-qi FENG +1 位作者 Song-bo FU Dian-jun SUN 《Current Medical Science》 SCIE CAS 2024年第1期93-101,共9页
Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates ... Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway. 展开更多
关键词 Keshan disease low selenium and low protein myocardial mitochondrial injury PTEN induced putative kinase 1(PINK1)/Parkin mitochondrial autophagy
下载PDF
C-reactive protein to albumin ratio predict responses to programmed cell death-1 inhibitors in hepatocellular carcinoma patients
4
作者 Bai-Bei Li Lei-Jie Chen +3 位作者 Shi-Liu Lu Biao Lei Gui-Lin Yu Shui-Ping Yu 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第1期61-78,共18页
BACKGROUND Over the years,programmed cell death-1(PD-1)inhibitors have been routinely used for hepatocellular carcinoma(HCC)treatment and yielded improved survival outcomes.Nonetheless,significant heterogeneity surrou... BACKGROUND Over the years,programmed cell death-1(PD-1)inhibitors have been routinely used for hepatocellular carcinoma(HCC)treatment and yielded improved survival outcomes.Nonetheless,significant heterogeneity surrounds the outcomes of most studies.Therefore,it is critical to search for biomarkers that predict the efficacy of PD-1 inhibitors in patients with HCC.AIM To investigate the role of the C-reactive protein to albumin ratio(CAR)in evaluating the efficacy of PD-1 inhibitors for HCC.METHODS The clinical data of 160 patients with HCC treated with PD-1 inhibitors from January 2018 to November 2022 at the First Affiliated Hospital of Guangxi Medical University were retrospectively analyzed.RESULTS The optimal cut-off value for CAR based on progression-free survival(PFS)was determined to be 1.20 using x-tile software.Cox proportional risk model was used to determine the factors affecting prognosis.Eastern Cooperative Oncology Group performance status[hazard ratio(HR)=1.754,95%confidence interval(95%CI)=1.045-2.944,P=0.033],CAR(HR=2.118,95%CI=1.057-4.243,P=0.034)and tumor number(HR=2.932,95%CI=1.246-6.897,P=0.014)were independent prognostic factors for overall survival.CAR(HR=2.730,95%CI=1.502-4.961,P=0.001),tumor number(HR=1.584,95%CI=1.003-2.500,P=0.048)and neutrophil to lymphocyte ratio(HR=1.120,95%CI=1.022-1.228,P=0.015)were independent prognostic factors for PFS.Two nomograms were constructed based on independent prognostic factors.The C-index index and calibration plots confirmed that the nomogram is a reliable risk prediction tool.The ROC curve and decision curve analysis confirmed that the nomogram has a good predictive effect as well as a net clinical benefit.CONCLUSION Overall,we reveal that the CAR is a potential predictor of short-and long-term prognosis in patients with HCC treated with PD-1 inhibitors.If further verified,CAR-based nomogram may increase the number of markers that predict individualized prognosis. 展开更多
关键词 C-reactive protein to albumin ratio Hepatocellular carcinoma Programmed cell death-1 inhibitors Prognosis NOMOGRAM
下载PDF
Polycytosine RNA-binding protein 1 regulates osteoblast function via a ferroptosis pathway in type 2 diabetic osteoporosis
5
作者 Hong-Dong Ma Lei Shi +2 位作者 Hai-Tian Li Xin-Dong Wang Mao-Wei Yang 《World Journal of Diabetes》 SCIE 2024年第5期977-987,共11页
BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by... BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP.Polycytosine RNA-binding protein 1(PCBP1),an iron ion chaperone,is considered a protector of ferroptosis.AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes.METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose(HG)and/or ferroptosis inhibitors at different concentrations and times.Transmission electron microscopy was used to examine the morpho-logical changes in the mitochondria of osteoblasts under HG,and western blotting was used to detect the expression levels of PCBP1,ferritin,and the ferroptosis-related protein glutathione peroxidase 4(GPX4).A lentivirus silenced and overex-pressed PCBP1.Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin(OPG)and osteocalcin(OCN),whereas flow cytometry was used to detect changes in reactive oxygen species(ROS)levels in each group.RESULTS Under HG,the viability of osteoblasts was considerably decreased,the number of mitochondria undergoing atrophy was considerably increased,PCBP1 and ferritin expression levels were increased,and GPX4 expression was decreased.Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1,increased the expression levels of ferritin,GPX4,OPG,and OCN,compared with the HG group.Flow cytometry results showed a reduction in ROS,and an opposite result was obtained after silencing PCBP1.CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment.Moreover,PCBP1 may be a potential therapeutic target for T2DOP. 展开更多
关键词 Polycytosine RNA-binding protein 1 Ferroptosis Reactive oxygen species FERRITIN OSTEOBLAST Type 2 diabetic osteoporosis
下载PDF
Calcitriol attenuates liver fibrosis through hepatitis C virus nonstructural protein 3-transactivated protein 1-mediated TGF β1/Smad3 and NF-κB signaling pathways 被引量:1
6
作者 Liu Shi Li Zhou +13 位作者 Ming Han Yu Zhang Yang Zhang Xiao-Xue Yuan Hong-Ping Lu Yun Wang Xue-Liang Yang Chen Liu Jun Wang Pu Liang Shun-Ai Liu Xiao-Jing Liu Jun Cheng Shu-Mei Lin 《World Journal of Gastroenterology》 SCIE CAS 2023年第18期2798-2817,共20页
BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy optio... BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy options are still lacking.Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1(NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis,but its role in diseases including hepatic fibrosis remains undefined.Therefore,additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups,comprising the normal,fibrosis,and calcitriol treatment groups,and liver fibrosis was modeled by carbon tetrachloride(CCl4).To evaluate the level of hepatic fibrosis in every group,serological and pathological examinations of the liver were conducted.TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells.NS3TP1,α-smooth muscle actin(α-SMA),collagen I,and collagen Ⅲ in every group were examined using a Western blot and real-time quantitative polymerase chain reaction.The activity of the transforming growth factor beta 1(TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected.The statistical analysis of the data was performed using the Student’s t test.RESULTS NS3TP1 promoted the activation,proliferation,and differentiation of hepatic stellate cells(HSCs)and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways,as evidenced by the presence of α-SMA,collagen I,collagen Ⅲ,p-smad3,and p-p65 in LX-2 cells,which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference.The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression,as shown by the luciferase assay.NS3TP1 inhibited the apoptosis of HSCs.Moreover,both Smad3 and p65 could bind to NS3TP1,and p65 increased the promoter activity of NS3TP1,while NS3TP1 increased the promoter activity of TGFβ1 receptor I,as indicated by coimmunoprecipitation and luciferase assay results.Both in vivo and in vitro,treatment with calcitriol dramatically reduced the expression of NS3TP1.Calcitriol therapy-controlled HSCs activation,proliferation,and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice.Furthermore,calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique,prospective therapeutic target in hepatic fibrosis. 展开更多
关键词 Nonstructural protein 3-transactivated protein 1 CALCITRIOL Liver fibrosis Hepatic stellate cells Mouse model TGFβ1/Smad3 NF-κB Signaling pathway
下载PDF
Transcription factor glucocorticoid modulatory element-binding protein 1 promotes hepatocellular carcinoma progression by activating Yes-associate protein 1
7
作者 Cheng Chen Hai-Guan Lin +4 位作者 Zheng Yao Yi-Ling Jiang Hong-Jin Yu Jing Fang Wei-Na Li 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第6期988-1004,共17页
BACKGROUND Glucocorticoid modulatory element-binding protein 1(GMEB1),which has been identified as a transcription factor,is a protein widely expressed in various tissues.Reportedly,the dysregulation of GMEB1 is linke... BACKGROUND Glucocorticoid modulatory element-binding protein 1(GMEB1),which has been identified as a transcription factor,is a protein widely expressed in various tissues.Reportedly,the dysregulation of GMEB1 is linked to the genesis and development of multiple cancers.AIM To explore GMEB1’s biological functions in hepatocellular carcinoma(HCC)and figuring out the molecular mechanism.METHODS GMEB1 expression in HCC tissues was analyzed employing the StarBase database.Immunohistochemical staining,Western blotting and quantitative realtime PCR were conducted to examine GMEB1 and Yes-associate protein 1(YAP1)expression in HCC cells and tissues.Cell counting kit-8 assay,Transwell assay and flow cytometry were utilized to examine HCC cell proliferation,migration,invasion and apoptosis,respectively.The JASPAR database was employed for predicting the binding site of GMEB1 with YAP1 promoter.Dual-luciferase reporter gene assay and chromatin immunoprecipitation-qPCR were conducted to verify the binding relationship of GMEB1 with YAP1 promoter region.RESULTS GMEB1 was up-regulated in HCC cells and tissues,and GMEB1 expression was correlated to the tumor size and TNM stage of HCC patients.GMEB1 overexpression facilitated HCC cell multiplication,migration,and invasion,and suppressed the apoptosis,whereas GMEB1 knockdown had the opposite effects.GMEB1 bound to YAP1 promoter region and positively regulated YAP1 expression in HCC cells.CONCLUSION GMEB1 facilitates HCC malignant proliferation and metastasis by promoting the transcription of the YAP1 promoter region. 展开更多
关键词 Hepatocellular carcinoma Glucocorticoid modulatory element-binding protein 1 Yes-associate protein 1 Apoptosis Proliferation
下载PDF
Death-associated protein kinase 1 is associated with cognitive dysfunction in major depressive disorder
8
作者 Xiao-Hui Li Hong-Can Zhu +5 位作者 Xue-Min Cui Wang Wang Lin Yang Li-Bo Wang Neng-Wei Hu Dong-Xiao Duan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1795-1801,共7页
We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's d... We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease.In addition,depression is a risk factor for developing Alzheimer's disease,as well as an early clinical manifestation of Alzheimer's disease.Meanwhile,cognitive dysfunction is a distinctive feature of major depressive disorder.Therefore,DAPK1 may be related to cognitive dysfunction in major depressive disorder.In this study,we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic,mild,unpredictable stressors.We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area,and tau was hyperphosphorylated at Thr231,Ser262,and Ser396 in these mice.Furthermore,DAPK1 shifted from axonal expression to overexpression on the cell membrane.Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction.These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder. 展开更多
关键词 Alzheimer's disease antidepressant drug behavioral tests cognitive dysfunction death-associated protein kinase 1 EXERCISE HIPPOCAMPUS major depressive disorder PHOSPHORYLATION tau protein
下载PDF
Calcium/calmodulin modulates salt responses by binding a novel interacting protein SAMS1 in peanut(Arachis hypogaea L.)
9
作者 Sha Yang Jianguo Wang +7 位作者 Zhaohui Tang Yan Li Jialei Zhang Feng Guo Jingjing Meng Feng Cui Xinguo Li Shubo Wan 《The Crop Journal》 SCIE CSCD 2023年第1期21-32,共12页
The Ca^(2+)/CaM signal transduction pathway helps plants adapt to environmental stress. However, our knowledge on the functional proteins of C^(2+)/CaM pathway in peanut(Arachis hypogeae L.) remains limited. In the pr... The Ca^(2+)/CaM signal transduction pathway helps plants adapt to environmental stress. However, our knowledge on the functional proteins of C^(2+)/CaM pathway in peanut(Arachis hypogeae L.) remains limited. In the present study, a novel calmodulin 4(CaM4)-binding protein S-adenosyl-methionine synthetase 1(SAMS1) in peanut was identified using a yeast two-hybrid assay. Expression of AhSAMS1was induced by Ca^(2+), ABA, and salt stress. To elucidate the function of AhSAMS1, physiological and phenotypic analyses were performed with wild-type and transgenic materials. Overexpression of AhSAMS1increased spermidine and spermidine synthesis while decreased the contents of ethylene, thereby eliminating excessive reactive oxygen species(ROS) in transgenic lines under salt stress. AhSAMS1 reduced uptake of Na+and leakage of K+from mesophyll cells, and was less sensitive to salt stress during early seedling growth, in agreement with the induction of SOS and NHX genes Transcriptomics combined with epigenetic regulation uncovered relationships between differentially expressed genes and differentially methylated regions, which raised the salt tolerance and plants growth. Our findings support a model in which the role of AhSAMS1 in the ROS-dependent regulation of ion homeostasis was enhanced by Ca^(2+)/CaM while AhSAMS1-induced methylation was regulated by CaM, thus providing a new strategy for increasing the tolerance of plants to salt stress. 展开更多
关键词 AhCaM4 AhSAMS1 protein interaction Polyamines Salt tolerance
下载PDF
A pilot study of the relative number of circulating tumor cells and leukocytes containing actin-binding proteins in head and neck cancer patients
10
作者 Gelena Kakurina Marina Stakheeva +4 位作者 Elena Sereda Evgenia Sidenko Olga Cheremisina Evgeny Choinzonov Irina Kondakova 《The Journal of Biomedical Research》 CAS CSCD 2023年第3期213-224,共12页
Circulating tumor cells(CTCs)play an important role in tumor metastases,which is positively correlated with an increased risk of death.Actin-binding proteins,including cofilin(CFL1),profilin 1(PFN1),and adenylate cycl... Circulating tumor cells(CTCs)play an important role in tumor metastases,which is positively correlated with an increased risk of death.Actin-binding proteins,including cofilin(CFL1),profilin 1(PFN1),and adenylate cyclase-associated protein 1(CAP1),are thought to be involved in tumor cell motility and metastasis,specifically in head and neck squamous cell carcinoma(HNSCC).However,currently,there are no published studies on CFL1,PFN1,and CAP1 in CTCs and leukocytes in HNSCC patients.We assessed serum levels of CFL1,PFN1,and CAP1 and the number of CTCs and leukocytes containing these proteins in blood from 31 HNSCC patients(T1-4N0-2M0).The analysis used flow cytometry and an enzyme-linked immunosorbent assay kit.We found that CAP1+CTCs and CAP1+leukocyte subpopulations were prevalent in these HNSCC patient samples,while the prevalence rates of CFL1+and PFN1+CTCs were relatively low.Patients with stage T2-4N1-2M0 had CFL1+and PFN1+CTCs with an elevated PFN1 serum level,compared with the T1-3N0M0 group.In summary,the PFN1 serum level and the relative number of PFN1+CD326+CTCs could be valuable prognostic markers for HNSCC metastases.The current study is the first to obtain data regarding the contents of actin-binding proteins(ABPs)in CTCs,and leukocytes in blood from HNSCC patients.This is also the first to assess the relationship between the number of CTCs subgroups and disease characteristics. 展开更多
关键词 head and neck squamous cell carcinoma METASTASIS circulating tumor cells actin-binding proteins adenylyl cyclase-associated protein 1
下载PDF
Protein Profiles of Pod Borer Maruca Resistant Transgenic Cowpea
11
作者 Mounyratou Rabo Teyioue Benoit Joseph Batieno +5 位作者 Assita Traoré-Barro Salimata Traoré Orokia Coulibaly Aboubacar Toguyeni Chantal Kaboré-Zoungrana Oumar Traoré 《American Journal of Plant Sciences》 2023年第12期1453-1463,共11页
The grain legume cowpea Vigna unguiculata (L.) Walp. is a major protein source used for food and feed in Sub-Saharan Africa. The crop is affected by the pod borer Maruca vitrata against which transgenic lines were dev... The grain legume cowpea Vigna unguiculata (L.) Walp. is a major protein source used for food and feed in Sub-Saharan Africa. The crop is affected by the pod borer Maruca vitrata against which transgenic lines were developed as part of the genetic control approach. This study aimed to assess the protein profiles in seeds and leaves of transgenic cowpea lines and their non-transgenic near-isogenic counterparts. Crude protein content was determined by the Kjeldahl method, and soluble proteins were quantified using Bradford dye binding assay. The average crude protein content ranged between 21.61% and 26.58% in the seeds and between 10.86% and 17.90% in the leaves. Total solubility varied between 13.03% and 20.64%. Osborne’s protein fractions contents in the seeds were 52.41% - 69.52% (albumin), 4.62% - 7.19% (globulin), 7.95% - 11.40% (glutelin) and 3% - 4% (prolamin). In any case, protein content differed significantly between cowpea genotypes but not between pairs of transgenic/non-transgenic lines. Insecticidal Cry1Ab protein expressed by transgenic lines was only detected in the albumin and globulin fractions. Altogether, these findings enhance our understanding of the effects of genetic modification on cowpea protein content and composition, with potential implications for nutritional and safety assessments. 展开更多
关键词 COWPEA protein CRY1AB protein Fractions
下载PDF
Photoprotective Effects of D1 Protein Turnover and the Lutein Cycle on Three Ephemeral Plants under Heat Stress
12
作者 Minmin Xiao Moxiang Cheng +3 位作者 Shuangquan Xie Xiushuang Wang Xingming Hao Li Zhuang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第6期1841-1857,共17页
To clarify the characteristics of photoinhibition and the primary defense mechanisms of ephemeral plant leaves against photodestruction under high temperature stress,inhibitors and the technology to determine chloroph... To clarify the characteristics of photoinhibition and the primary defense mechanisms of ephemeral plant leaves against photodestruction under high temperature stress,inhibitors and the technology to determine chlorophyll fluorescence were used to explore the protective effects of D1 protein turnover and the lutein cycle in the high temperature stress of the leaves of three ephemeral plants.The results showed that the maximum light conversion efficiency(Fv/Fm)of the ephemeral plant leaves decreased,and the initial fluorescence(Fo)increased under 35℃±1℃ heat stress for 1-4 h or on sunny days in the summer.Both Fv/Fm and Fo could be recovered after 8 h of darkness or afternoon weakening of the external temperature.Streptomycin sulfate(SM)or dithiothreitol(DTT)accelerated the decrease of Fv/Fm and the photochemical quenching coefficient(qP)in the leaves of three ephemeral plants at high temperature,and the decrease was greater in the SM than in the DTT treatment.When the high temperature stress was prolonged,the Y(II)values of light energy distribution parameters of PSII decreased,and the Y(NPQ)and Y(NO)values increased gradually in all the treatment groups of the three ephemeral plants.The results showed that the leaves of the three ephemeral plants had their own highly advanced mechanisms to protect against photodamage,which inhibited the turnover of D1 protein and xanthophyll cycle.This can damage the PSII reaction center in the leaves of the three ephemeral plants under high temperature.The protective effect of D1 protein turnover on heat stress in Erodium oxyrrhynchum and Senecio subdentatus was greater than that of the lutein cycle,while the protective effect of lutein cycle was greater than that of D1 protein turnover in Heliotropium acutiflorum subjected to heat damage. 展开更多
关键词 D1 protein lutein cycle ephemeral plants light inhibition light protection
下载PDF
Deleted in liver cancer 1 suppresses the growth of prostate cancer cells through inhibiting Rho-associated protein kinase pathway
13
作者 Hua Gong Kang Chen +2 位作者 Lan Zhou Yongchao Jin Weihua Chen 《Asian Journal of Urology》 CSCD 2023年第1期50-57,共8页
Objective:Deleted in liver cancer 1(DLC1)is a GTPase-activating protein that is reported as a suppressor in certain human cancers.However,the detailed biological function of DLC1 is still unclear in human prostate can... Objective:Deleted in liver cancer 1(DLC1)is a GTPase-activating protein that is reported as a suppressor in certain human cancers.However,the detailed biological function of DLC1 is still unclear in human prostate cancer(PCa).In the present study,we aimed to explore the function of DLC1 in PCa cells.Methods:Silencing and overexpression of DLC1 were induced in an androgen-sensitive PCa cell line(LNCaP)using RNA interference and lentiviral vector transduction.The Cell Counting Kit-8 assay was performed to determine cell proliferation.The cell cycle was examined by performing a propidium iodide staining assay.Results:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of LNCaP cells.Moreover,DLC1 expression was negatively correlated with Rho-associated protein kinase(ROCK)expression in LNCaP cells.Importantly,this study showed that the ROCK inhibitor Y27632 restored the function of DLC1 in LNCaP cells and reduced the tumorigenicity of LNCaP cells in vivo.Conclusion:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of PCa cells and negatively correlated with ROCK expression in PCa cells and tissue. 展开更多
关键词 Cell cycle Deleted in liver cancer 1 PROLIFERATION Prostate cancer Rho-associated protein kinase
下载PDF
Suppressing high mobility group box-1 release alleviates morphine tolerance via the adenosine5'-monophosphate-activated protein kinase/heme oxygenase-1 pathway
14
作者 Tong-Tong Lin Chun-Yi Jiang +10 位作者 Lei Sheng Li Wan Wen Fan Jin-Can Li Xiao-Di Sun Chen-Jie Xu Liang Hu Xue-Feng Wu Yuan Han Wen-Tao Liu Yin-Bing Pan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期2067-2074,共8页
Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p... Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance. 展开更多
关键词 adenosine 5’-monophosphate-activated protein kinase heme oxygenase-1 high mobility group box-1 INTERLEUKIN-1Β MICROGLIA morphine tolerance NEUROINFLAMMATION neuron nuclear factor-κB p65 Toll-like receptor 4
下载PDF
Effectiveness of conjunctival bleb scarring by knockdown of heat shock protein 47 in rat model
15
作者 Wei-Wei Wang Hai-Yan Li Huan-Huan Yan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第10期1589-1594,共6页
AIM:To evaluate the effectiveness of knock-down of heat shock protein 47(HSP47)on conjunctival bleb scarring in a rat model and its possible mechanism.METHODS:Male Sprague–Dawley rats were used for glaucoma filtratio... AIM:To evaluate the effectiveness of knock-down of heat shock protein 47(HSP47)on conjunctival bleb scarring in a rat model and its possible mechanism.METHODS:Male Sprague–Dawley rats were used for glaucoma filtration surgery(GFS)and were treated with either phosphate buffered solution,shControl,mitomycin C,or sh-HSP47 using a microsyringe immediately after GFS.The morphology of filtering blebs was observed postoperatively.The levels of HSP47 were analyzed at 2,5,8,and 11d after GFS via real‑time quantitative polymerase chain reaction(PCR)and Western blot.The silencing effect of HSP47,the expression of collagen I and III,and the potential signaling pathways of HSP47 during scarification were explored 11d post GFS.The protein levels of transforming growth factor-β1(TGF-β1),phospho-Smad2(pSmad2),phospho-Smad3(p-Smad3),and phospho-p38(p-p38)were also analyzed using Western blot.RESULTS:Sh-HSP47 treatment significantly prolonged the functional filtration bleb retention.The levels of HSP47 were increased significantly at 5,8,and 11d postoperatively compared to the control group(P<0.05,P<0.01,and P<0.001).The levels of HSP47 protein at day 11 postoperatively were significantly down-regulated after HSP47 silencing using sh-HSP47 adenovirus transfection(P<0.01).Expression levels of collagen I and III within the blebs were significantly reduced in the absence of HSP47(P<0.01).Moreover,the protein levels of TGF-β1,p-Smad2/3,and p-p38 were dramatically inhibited after treatment with sh-HSP47(P<0.01).CONCLUSION:The inhibitory effects of HSP47 knockdown on scarring after GFS have the potential to be an efficacious therapeutic option for the treatment of conjunctival bleb scarring. 展开更多
关键词 heat shock protein 47 filtration surgery conjunctival bleb SCAR transforming growth factor-β1
原文传递
Changes and significance of serum ubiquitin carboxyl-terminal hydrolase L1 and glial fibrillary acidic protein in patients with glioma
16
作者 Qing-Hua Zhu Jing-Kun Wu Gao-Lei Hou 《World Journal of Clinical Cases》 SCIE 2023年第14期3158-3166,共9页
BACKGROUND Brain gliomas are malignant tumors with high postoperative recurrence rates.Early prediction of prognosis using specific indicators is of great significance.AIM To assess changes in ubiquitin carboxy-termin... BACKGROUND Brain gliomas are malignant tumors with high postoperative recurrence rates.Early prediction of prognosis using specific indicators is of great significance.AIM To assess changes in ubiquitin carboxy-terminal hydrolase L1(UCH-L1)and glial fibrillary acidic protein(GFAP)levels in patients with glioma pre-and postoperatively.METHODS Between June 2018 and June 2021,91 patients with gliomas who underwent surgery at our hospital were enrolled in the glioma group.Sixty healthy volunteers were included in the control group.Serum UCH-L1 and GFAP levels were measured in peripheral blood collected from patients with glioma before and 3 d after surgery.UCH-L1 and GFAP levels in patients with glioma with different clinicopathological characteristics were compared before and after surgery.The patients were followed-up until February 2022.Postoperative glioma recurrence was recorded to determine the serum UCH-L1 and GFAP levels,which could assist in predicting postoperative glioma recurrence.RESULTS UCH-L1 and GFAP levels in patients with glioma decreased significantly 3 d after surgery compared to those before therapy(P<0.05).However,UCH-L1 and GFAP levels in the glioma group were significantly higher than those in the control group before and after surgery(P<0.05).There were no statistically significant differences in preoperative serum UCH-L1 and GFAP levels among patients with glioma according to sex,age,pathological type,tumor location,or number of lesions(P>0.05).Serum UCH-L1 and GFAP levels were significantly lower in the patients with WHO grade I-II tumors than in those with gradeⅢ-IV tumors(P<0.05).Serum UCH-L1 and GFAP levels were lower in the patients with tumor diameter≤5 cm than in those with diameter>5 cm,in which the differences were statistically significant(P<0.05).Glioma recurred in 22 patients.The preoperative and 3-d postoperative serum UCH-L1 and GFAP levels were significantly higher in the recurrence group than these in the non-recurrence group(P<0.05).Receiver operating characteristic curves were plotted.The areas under the curves of preoperative serum UCH-L1 and GFAP levels for predicting postoperative glioma recurrence were 0.785 and 0.775,respectively.However,the efficacy of serum UCH-L1 and GFAP levels 3 d after surgery in predicting postoperative glioma recurrence was slightly lower compared with their preoperative levels.CONCLUSION UCH-L1 and GFAP efficiently reflected the development and recurrence of gliomas and could be used as potential indicators for the recurrence and prognosis of glioma. 展开更多
关键词 GLIOMA Ubiquitin carboxy-terminal hydrolase L1 Glial fibrillary acidic protein Surgery Prognosis Clinical significance
下载PDF
Long non-coding RNA CDKN2B-AS1 promotes hepatocellular carcinoma progression via E2F transcription factor 1/G protein subunit alpha Z axis
17
作者 Zhi-Gang Tao Yu-Xiao Yuan Guo-Wei Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第11期1974-1987,共14页
BACKGROUND A series of long non-coding RNAs(lncRNAs)have been reported to play a crucial role in cancer biology.Some previous studies report that lncRNA CDKN2B-AS1 is involved in some human malignancies.However,its ro... BACKGROUND A series of long non-coding RNAs(lncRNAs)have been reported to play a crucial role in cancer biology.Some previous studies report that lncRNA CDKN2B-AS1 is involved in some human malignancies.However,its role in hepatocellular carcinoma(HCC)has not been fully deciphered.AIM To decipher the role of CDKN2B-AS1 in the progression of HCC.METHODS CDKN2B-AS1 expression in HCC was detected by quantitative real-time polymerase chain reaction.The malignant phenotypes of Li-7 and SNU-182 cells were detected by the CCK-8 method,EdU method,and flow cytometry,respectively.RNA immunoprecipitation was executed to confirm the interaction between CDKN2B-AS1 and E2F transcription factor 1(E2F1).Luciferase reporter assay and chromatin immunoprecipitation were performed to verify the binding of E2F1 to the promoter of G protein subunit alpha Z(GNAZ).E2F1 and GNAZ were detected by western blot in HCC cells.RESULTS In HCC tissues,CDKN2B-AS1 was upregulated.Depletion of CDKN2B-AS1 inhibited the proliferation of HCC cells,and the depletion of CDKN2B-AS1 also induced cell cycle arrest and apoptosis.CDKN2B-AS1 could interact with E2F1.Depletion of CDKN2B-AS1 inhibited the binding of E2F1 to the GNAZ promoter region.Overexpression of E2F1 reversed the biological effects of depletion of CDKN2B-AS1 on the malignant behaviors of HCC cells.CONCLUSION CDKN2B-AS1 recruits E2F1 to facilitate GNAZ transcription to promote HCC progression. 展开更多
关键词 Hepatocellular carcinoma CDKN2B-AS1 E2F transcription factor 1 G protein subunit alpha Z Proliferation
下载PDF
MicroRNA-363-3p inhibits colorectal cancer progression by targeting interferon-induced transmembrane protein 1
18
作者 Yun Wang Shao-Kai Bai +1 位作者 Tao Zhang Cheng-Gong Liao 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第9期1556-1566,共11页
BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METH... BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METHODS Real-time polymerase chain reaction was performed to detect miRNA expression in human colorectal cancer tissues and paired normal colorectal tissues.PITA 6 was utilized to predict the targets of miR-363-3p.Dual-luciferase reporter system was used to validate the target of miR-363-3p.Plate colony formation assay and wound-healing assay were performed to evaluate cancer cells’clonogenic survival ability and migration ability,respectively.Cell proliferation was examined by cell counting kit-8 assay.Immunohistochemical staining was used to determine the expression level of interferon-induced transmembrane protein 1(IFITM1)in colorectal cancer tissues and adjacent tissues.The TCGA and GTEx databases were used to compare the expression levels of IFITM1 mRNA in colorectal cancer tissues and normal colorectal tissues and analyze the correlation between the expression levels of IFITM1 mRNA and overall survival and disease-free survival of patients.A colorectal cancer cell line with a deficiency of IFITM1 was constructed,and the regulation effect of IFITM1 on the clonogenic growth of colorectal cancer cells was clarified.RESULTS MiR-363-3p was decreased in colorectal cancer tissues compared to normal colorectal tissues.IFITM1 was characterized as a direct target of miR-363-3p.Overexpression of miR-363-3p led to decreased clonogenic survival,proliferation,and migration of colorectal cancer cells,which could be reversed by forced IFITM1 expression.CONCLUSION MiR-363-3p can constrain clonogenic survival,proliferation,and migration of colorectal cancer cells via targeting IFITM1. 展开更多
关键词 MicroRNA-363-3p Proliferation Clonogenic survival Colorectal cancer Interferon-induced transmembrane protein 1
下载PDF
A candidate protective factor in amyotrophic lateral sclerosis:heterogenous nuclear ribonucleoprotein G
19
作者 Fang Yang Wen-Zhi Chen +2 位作者 Shi-Shi Jiang Xiao-Hua Wang Ren-Shi Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1527-1534,共8页
Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur(TG)amyotrophic lateral sclerosis mouse model.However,most studies have only examined heterogenous nuclear ribonucl... Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur(TG)amyotrophic lateral sclerosis mouse model.However,most studies have only examined heterogenous nuclear ribonucleoprotein G expression in the amyotrophic lateral sclerosis model and heterogenous nuclear ribonucleoprotein G effects in amyotrophic lateral sclerosis pathogenesis such as in apoptosis are unknown.In this study,we studied the potential mechanism of heterogenous nuclear ribonucleoprotein G in neuronal death in the spinal cord of TG and wild-type mice and examined the mechanism by which heterogenous nuclear ribonucleoprotein G induces apoptosis.Heterogenous nuclear ribonucleoprotein G in spinal cord was analyzed using immunohistochemistry and western blotting,and cell proliferation and proteins(TAR DNA binding protein 43,superoxide dismutase 1,and Bax)were detected by the Cell Counting Kit-8 and western blot analysis in heterogenous nuclear ribonucleoprotein G siRNA-transfected PC12 cells.We analyzed heterogenous nuclear ribonucleoprotein G distribution in spinal cord in the amyotrophic lateral sclerosis model at various time points and the expressions of apoptosis and proliferation-related proteins.Heterogenous nuclear ribonucleoprotein G was mainly localized in neurons.Amyotrophic lateral sclerosis mice were examined at three stages:preonset(60-70 days),onset(90-100 days)and progression(120-130 days).The number of heterogenous nuclear ribonucleoprotein G-positive cells was significantly higher in the anterior horn of the lumbar spinal cord segment of TG mice at the preonset stage than that of control group but lower than that of the control group at the onset stage.The number of heterogenous nuclear ribonucleoprotein G-positive cells in both central canal and surrounding gray matter of the whole spinal cord of TG mice at the onset stage was significantly lower than that in the control group,whereas that of the lumbar spinal cord segment of TG mice was significantly higher than that in the control group at preonset stage and significantly lower than that in the control group at the progression stage.The numbers of heterogenous nuclear ribonucleoprotein G-positive cells in the posterior horn of cervical and thoracic segments of TG mice at preonset and progression stages were significantly lower than those in the control group.The expression of heterogenous nuclear ribonucleoprotein G in the cervical spinal cord segment of TG mice was significantly higher than that in the control group at the preonset stage but significantly lower at the progression stage.The expression of heterogenous nuclear ribonucleoprotein G in the thoracic spinal cord segment of TG mice was significantly increased at the preonset stage,significantly decreased at the onset stage,and significantly increased at the progression stage compared with the control group.heterogenous nuclear ribonucleoprotein G expression in the lumbar spinal cord segment of TG mice was significantly lower than that of the control group at the progression stage.After heterogenous nuclear ribonucleoprotein G gene silencing,PC12 cell survival was lower than that of control cells.Both TAR DNA binding protein 43 and Bax expressions were significantly increased in heterogenous nuclear ribonucleoprotein G-silenced cells compared with control cells.Our study suggests that abnormal distribution and expression of heterogenous nuclear ribonucleoprotein G might play a protective effect in amyotrophic lateral sclerosis development via preventing neuronal death by reducing abnormal TAR DNA binding protein 43 generation in the spinal cord. 展开更多
关键词 amyotrophic lateral sclerosis Bax heterogenous nuclear ribonucleoprotein G heterogenous nuclear ribonucleoprotein G-siRNA neuron death superoxide dismutase 1 TAR DNA binding protein 43 TG(SOD1*G93A)1Gur mice
下载PDF
Overexpression of mitogen-activated protein kinase phosphatase-1 in endothelial cells reduces blood-brain barrier injury in a mouse model of ischemic stroke
20
作者 Xiu-De Qin Tai-Qin Yang +6 位作者 Jing-Hui Zeng Hao-Bin Cai Shao-Hua Qi Jian-Jun Jiang Ying Cheng Long-Sheng Xu Fan Bu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1743-1749,共7页
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le... Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis. 展开更多
关键词 blood-brain barrier brain injury cerebral ischemia endothelial cells extracellular signal-regulated kinase 1/2 functional recovery mitogenactivated protein kinase phosphatase 1 OCCLUDIN oxygen and glucose deprivation transient middle cerebral artery occlusion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部