An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W e...An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W electrode.The wear mechanism of Ni-TiN/Cu composite electrode in the case of high-frequency pulse current is studied,and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out.Compared with the electrode made from homogeneous material,the high frequency electromagnetic properties of Ni-TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.展开更多
Micro-gas turbine engine(MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, th...Micro-gas turbine engine(MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, the main manufacturing technologies of the MTE rotor are directed forming fabrication technologies. However, these technologies have a series of problems, such as complex processing technology high manufacturing cost, and low processing efficiency, and so on. This paper takes advantage of micro electric discharge machining(micro-EDM) in the field of microminiature molds manufacturing, organizes many processing technologies of micro-EDM reasonably to improve processing accuracy, presents an integrated micro-EDM technology and its process flow to fabricate MTE rotor die, and conducts a series of experiments to verify efficiency of this integrated micro-EDM. The experiments results show that the MTE rotor die has sharp outline and ensure the good consistency of MTE rotor blades. Meanwhile, the MTE rotor die is applied to micro extrusion equipment, and technologies of micro-EDM and micro forming machining are combined based on the idea of the molds manufacturing, so the MTE rotor with higher aspect ratio and better consistency of blades can be manufactured efficiently. This research presents an integrated micro-EDM technology and its process flow, which promotes the practical process of MTE effectively.展开更多
A human face with complex 3D structure is machined with a modified fix-length compensation method in this paper.The fast development of MEMS (Micro Electromechanical Systems) has strongly enhanced the application of n...A human face with complex 3D structure is machined with a modified fix-length compensation method in this paper.The fast development of MEMS (Micro Electromechanical Systems) has strongly enhanced the application of new harder work materials.As a low cost,flexible,good repeatable machining process with negligible process forces,micro-EDM milling is well suited for freeform metallic micro structures.A major problem in micro-EDM milling of complex 3D structure is the electrode wear.A new CAM system based on the UG software platform is developed in order to get good accuracy and higher efficiency.A correction coefficient is introduced and deduced for the modified fix-length compensation method.Using this method a human face with complex 3D stricter is machined successfully by micro-EDM milling.展开更多
This article proposes a new type of electrode for micro-electro-discharge machining (micro-EDM) , which can produce ultra fine micro components from various kinds of materials including those that cannot be processed ...This article proposes a new type of electrode for micro-electro-discharge machining (micro-EDM) , which can produce ultra fine micro components from various kinds of materials including those that cannot be processed by the silicon or the Litho-graphie Galvanoformung Abformung (LIGA) processings. This electrode is made by way of the electrodeposition process on the basis of the difference between the discharging performance of the electrodeposited coating and that of the matrix to ensure uniform wear of ele...展开更多
Ti-6A1-4V super alloy is an important engi- neering material with good strength to weight ratio and a wide range of applications in a number of engineering fields because of its excellent physical and mechanical prope...Ti-6A1-4V super alloy is an important engi- neering material with good strength to weight ratio and a wide range of applications in a number of engineering fields because of its excellent physical and mechanical properties. This work determines optimum process parameters such as pulse on time, peak current, gap voltage and flushing pressure, which influence the micro-electro discharge machining (EDM) process during machining of Ti-6AI-4V using combined methods of response surface methodology (RSM) and fuzzy-technique for order pref- erence by similarity to ideal solution (TOPSIS). Central composite design (CCD) is used in the experimental investigation. A decision making model is developed to identify the optimum process parameters in the micro- EDM process, which influences several machining criteri- ons such as material removal rate (MRR), tool wear rate (TWR), overcut (OC) and taper. Triangular fuzzy numbers are used to determine the weighting factor for each process criterion. Further a fuzzy-TOPSIS method is used to select the most desirable factor level combinations. The proposed technique can be used to select optimal process parameters from various sets of combinations of process parameters in a micro-EDM process.展开更多
基金the National Natural Science Foundation of China for financially supporting this research through project No.51005027
文摘An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W electrode.The wear mechanism of Ni-TiN/Cu composite electrode in the case of high-frequency pulse current is studied,and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out.Compared with the electrode made from homogeneous material,the high frequency electromagnetic properties of Ni-TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB934102)National Natural Science Foundation of China(Grant No.50835002)National Science Foundation for Young Scientists of China(Grant No.51105111)
文摘Micro-gas turbine engine(MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, the main manufacturing technologies of the MTE rotor are directed forming fabrication technologies. However, these technologies have a series of problems, such as complex processing technology high manufacturing cost, and low processing efficiency, and so on. This paper takes advantage of micro electric discharge machining(micro-EDM) in the field of microminiature molds manufacturing, organizes many processing technologies of micro-EDM reasonably to improve processing accuracy, presents an integrated micro-EDM technology and its process flow to fabricate MTE rotor die, and conducts a series of experiments to verify efficiency of this integrated micro-EDM. The experiments results show that the MTE rotor die has sharp outline and ensure the good consistency of MTE rotor blades. Meanwhile, the MTE rotor die is applied to micro extrusion equipment, and technologies of micro-EDM and micro forming machining are combined based on the idea of the molds manufacturing, so the MTE rotor with higher aspect ratio and better consistency of blades can be manufactured efficiently. This research presents an integrated micro-EDM technology and its process flow, which promotes the practical process of MTE effectively.
基金Funded by the National Natural Science Foundation of China (No.50635040)
文摘A human face with complex 3D structure is machined with a modified fix-length compensation method in this paper.The fast development of MEMS (Micro Electromechanical Systems) has strongly enhanced the application of new harder work materials.As a low cost,flexible,good repeatable machining process with negligible process forces,micro-EDM milling is well suited for freeform metallic micro structures.A major problem in micro-EDM milling of complex 3D structure is the electrode wear.A new CAM system based on the UG software platform is developed in order to get good accuracy and higher efficiency.A correction coefficient is introduced and deduced for the modified fix-length compensation method.Using this method a human face with complex 3D stricter is machined successfully by micro-EDM milling.
基金National Natural Science Foundation of China (50635040)
文摘This article proposes a new type of electrode for micro-electro-discharge machining (micro-EDM) , which can produce ultra fine micro components from various kinds of materials including those that cannot be processed by the silicon or the Litho-graphie Galvanoformung Abformung (LIGA) processings. This electrode is made by way of the electrodeposition process on the basis of the difference between the discharging performance of the electrodeposited coating and that of the matrix to ensure uniform wear of ele...
文摘Ti-6A1-4V super alloy is an important engi- neering material with good strength to weight ratio and a wide range of applications in a number of engineering fields because of its excellent physical and mechanical properties. This work determines optimum process parameters such as pulse on time, peak current, gap voltage and flushing pressure, which influence the micro-electro discharge machining (EDM) process during machining of Ti-6AI-4V using combined methods of response surface methodology (RSM) and fuzzy-technique for order pref- erence by similarity to ideal solution (TOPSIS). Central composite design (CCD) is used in the experimental investigation. A decision making model is developed to identify the optimum process parameters in the micro- EDM process, which influences several machining criteri- ons such as material removal rate (MRR), tool wear rate (TWR), overcut (OC) and taper. Triangular fuzzy numbers are used to determine the weighting factor for each process criterion. Further a fuzzy-TOPSIS method is used to select the most desirable factor level combinations. The proposed technique can be used to select optimal process parameters from various sets of combinations of process parameters in a micro-EDM process.