期刊文献+
共找到292篇文章
< 1 2 15 >
每页显示 20 50 100
Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/ Shrinking Sheet with a Heat Source or Sink
1
作者 Parakapali Roja Shaik Mohammed Ibrahim +1 位作者 Thummala Sankar Reddy Giulio Lorenzini 《Fluid Dynamics & Materials Processing》 EI 2024年第2期257-274,共18页
This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into accoun... This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into account.A similarity transformation is used to reduce the system of governing coupled non-linear partial differ-ential equations(PDEs),which account for the transport of mass,momentum,angular momentum,energy and species,to a set of non-linear ordinary differential equations(ODEs).The Runge-Kutta method along with shoot-ing method is used to solve them.The impact of several parameters is evaluated.It is shown that the micro-rota-tional velocity of thefluid rises with the micropolar factor.Moreover,the radiation parameter can have a remarkable influence on theflow and temperature profiles and on the angular momentum distribution. 展开更多
关键词 Chemical(first order homogeneous)reaction MAGNETOHYDRODYNAMICS micropolar NANOFLUID stretching/shrinking sheet heat source
下载PDF
The Effects of Thermal Radiation and Viscous Dissipation on the Stagnation Point Flow of a Micropolar Fluid over a Permeable Stretching Sheet in the Presence of Porous Dissipation 被引量:1
2
作者 Muhammad Salman Kausar H.A.M.Al-Sharifi +1 位作者 Abid Hussanan Mustafa Mamat 《Fluid Dynamics & Materials Processing》 EI 2023年第1期61-81,共21页
In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suit... In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter. 展开更多
关键词 micropolar fluid viscous dissipation stagnation point stretching sheet porous media thermal radiation
下载PDF
Theory and Semi-Analytical Study of Micropolar Fluid Dynamics through a Porous Channel
3
作者 Aziz Khan Sana Ullah +3 位作者 Kamal Shah Manar A.Alqudah Thabet Abdeljawad Fazal Ghani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1473-1486,共14页
In this work,We are looking at the characteristics of micropolar flow in a porous channel that’s being driven by suction or injection.The working of the fluid is described in the flowmodel.We can reduce the governing... In this work,We are looking at the characteristics of micropolar flow in a porous channel that’s being driven by suction or injection.The working of the fluid is described in the flowmodel.We can reduce the governing nonlinear partial differential equations(PDEs)to a model of coupled systems of nonlinear ordinary differential equations using similarity variables(ODEs).In order to obtain the results of a coupled system of nonlinear ODEs,we discuss a method which is known as the differential transform method(DTM).The concern transform is an excellent mathematical tool to obtain the analytical series solution to the nonlinear ODEs.To observe beast agreement between analytical method and numerical method,we compare our result with the Rung-Kutta method of order four(RK4).We also provide simulation plots to the obtained result by using Mathematica.Onthese plots,we discuss the effect of different parameters which arise during the calculation of the flow model equations. 展开更多
关键词 Mass transfer micropolar flow porous channel similarity variables differential transform method
下载PDF
On complete and micropolar-based incomplete strain gradient theories for periodic lattice structures
4
作者 Zeyang CHI Jinxing LIU A.K.SOH 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1651-1674,共24页
The micropolar(MP) and strain gradient(SG) continua have been generally adopted to investigate the relations between the macroscopic elastic constants and the microstructural geometric parameters. Owing to the fact th... The micropolar(MP) and strain gradient(SG) continua have been generally adopted to investigate the relations between the macroscopic elastic constants and the microstructural geometric parameters. Owing to the fact that the microrotation in the MP theory can be expressed in terms of the displacement gradient components, we may regard the MP theory as a particular incomplete SG theory called the MPSG theory,compared with the existing SG theories which are deemed complete since all the SGs are included. Taking the triangular lattice comprising zigzag beams as an example, it is found that as the angle of the zigzag beams increases, the bending of the beams plays a more important role in the total strain energy, and the difference between the results by the two theories gradually decreases. Finally, the models are verified with the pure bending and simple shear of lattices by comparing with the results obtained by the finite element method(FEM)-based structure analyses. 展开更多
关键词 periodic lattice metamaterial energy principle HOMOGENIZATION micropolar(MP) strain gradient(SG)theory
下载PDF
VANISHING VISCOSITY LIMIT FOR THE 3D INCOMPRESSIBLE MICROPOLAR EQUATIONS IN A BOUNDED DOMAIN
5
作者 储洋洋 肖跃龙 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期959-974,共16页
In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar... In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar equations in a general bounded smooth domain.In particular,we establish the uniform estimate of the strong solutions for when the boundary is flat.Furthermore,we obtain the rate of convergence of viscosity solutions to the inviscid solutions as the viscosities tend to zero(i.e.,(ε,χ,γ,κ)→0). 展开更多
关键词 incompressible micropolar equations initial-and boundary-valuc problcm van-ishingviscositylimit
下载PDF
Strain localization of Mohr-Coulomb soils with non-associated plasticity based on micropolar continuum theory
6
作者 Jianbin Tang Xi Chen +1 位作者 Liusheng Cui Zongqi Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3316-3327,共12页
To address the problems of strain localization, the exact Mohr-Coulomb (MC) model is used based on second-order cone programming (mpcFEM-SOCP) in the framework of micropolar continuum finite element method. Using the ... To address the problems of strain localization, the exact Mohr-Coulomb (MC) model is used based on second-order cone programming (mpcFEM-SOCP) in the framework of micropolar continuum finite element method. Using the uniaxial compression test, we focused on the earth pressure problem of rigid wall segment involving non-associated plasticity. The numerical results reveal that when mpcFEM-SOCP is applied, the problems of mesh dependency can be effectively addressed. For geotechnical strain localization analysis involving non-associated MC plasticity, mpcFEM-SOCP in conjunction with the pseudo-time discrete scheme can improve the numerical stability and avoid the unreasonable softening issue in the pressure-displacement curves, which may be encountered in the conventional FEM. It also shows that the pressure-displacement responses calculated by mpcFEM-SOCP with the pseudo-time discrete scheme are higher than those calculated by mpcFEM-SOCP with the Davis scheme. The inclination angle of shear band predicted by mpcFEM-SOCP with the pseudo-time discrete scheme agrees well with the theoretical solution of non-associated MC plasticity. 展开更多
关键词 Strain localization micropolar continuum Mohr-Coulomb(MC)model Non-associated plasticity Second-order cone programming
下载PDF
Unsteady Flow and Heat Transfer of a Casson Micropolar Nanofluid over a Curved Stretching/Shrinking Surface
7
作者 Muhammad A.Sadiq Nadeem Abbas +1 位作者 Haitham M.S.Bahaidarah Mohammad Amjad 《Fluid Dynamics & Materials Processing》 EI 2023年第2期471-486,共16页
We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid over a shrinking/stretching curved surface,together with a heat transfer analysis of the same problem.... We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid over a shrinking/stretching curved surface,together with a heat transfer analysis of the same problem.The body force acting perpendicular to the surface wall is in charge of regulating the fluid flow rate.Curvilinear coordinates are used to account for the considered curved geometry and a set of balance equations for mass,momentum,energy and concentration is obtained accordingly.These are turned into ordinary differential equations using a similarity transformation.We show that these equations have dual solutions for a number of different combinations of various parameters.The stability of such solutions is investigated by applying perturbations on the steady states.It is found that high values of the Micropolar and Casson parameters cause the flow to move more slowly.However,when compared to a shrunken surface,a stretched surface produces a greater Micro-rotation flux. 展开更多
关键词 Dual solutions micropolar Casson fluid curved surface PERTURBATION eigen values
下载PDF
NCCT for Micropolar Solid and Fluid Media Based on Internal Rotations and Rotation Rates with Rotational Inertial Physics: Model Problem Studies
8
作者 Karan S. Surana Jacob K. Kendall 《Applied Mathematics》 2023年第9期612-651,共40页
This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations... This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations and rotation rates in which rotational inertial physics is considered in the derivation of the conservation and balance laws (CBL). The dissipation mechanism is due to strain rates as well as rotation rates. Model problems are designed to demonstrate and illustrate various significant aspects of the micropolar NCCT with rotational inertial physics considered in this paper. In case of micropolar solids, the translational and rotational waves are shown to coexist. In the absence of microconstituents (classical continuum theory, CCT) the internal rotations are a free field, hence have no influence on CCT. Absence of gradients of displacements and strains in micropolar thermoviscous fluid medium prohibits existence of translational waves as well as rotational waves even though the appearance of the mathematical model is analogous to the solids, but in terms of strain rates. It is shown that in case of micropolar thermoviscous fluids the BAM behaves more like time dependent diffusion equation i.e., like heat conduction equation in Lagrangian description. The influence of rotational inertial physics is demonstrated using BLM as well as BAM in the model problem studies. 展开更多
关键词 micropolar Internal Rotations Internal Rotation Rates Translational Waves Rotational Waves DISSIPATION Thermoviscous Rotational Inertial Physics
下载PDF
Computational Dynamics of Stagnation Point Flow of Micropolar Fluid Past Vertical Porous Plates
9
作者 Ayando Timothy Ibrahim Y. Seini Musah Sulemana 《Journal of Applied Mathematics and Physics》 2023年第11期3484-3504,共21页
This work examines the flow of a micropolar fluid over a vertical porous plate at the MHD stagnation point under viscous dissipation, convective boundary conditions, and thermal radiation. The governing partial differ... This work examines the flow of a micropolar fluid over a vertical porous plate at the MHD stagnation point under viscous dissipation, convective boundary conditions, and thermal radiation. The governing partial differential equations and a set of similarity parameters were used to transform them into ordinary differential equations. The Runge-Kutta fourth-order algorithm is used in conjunction with the Newton Raphson shooting technique to numerically solve the generated self-similar equations. Results were tabulated both numerically and graphically, and examples for different controlling factors are quantitatively analyzed. According to the study, the vortex viscosity parameter (k) causes the velocity profiles to rise while the magnetic parameter, suction parameter, and radiation parameter cause them to fall. In contrast, as the flow’s suction and prandtl values rise, so do the magnetic parameter, radiation, and vortex viscosity, while the thickness of the thermal boundary layer decreases. . 展开更多
关键词 MHD Viscous Dissipation Thermal Radiation MICROROTATION micropolar Fluid
下载PDF
带有分数阶耗散项的Magneto-Micropolar方程组的整体适定性
10
作者 石婷 张辉 《应用数学》 北大核心 2023年第4期915-921,共7页
本文通过对三维磁场微极流方程组(Magneto-Micropolar fluid)的非线性结构进行细致分析并结合能量估计的方法,对一类带有分数阶耗散项的磁场微极流方程组解的整体适定性进行了研究,获得了当α≥5/2时磁场微极流方程组解的整体适定性.
关键词 磁场微极流方程组 分数阶耗散项 整体适定性
下载PDF
Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel 被引量:1
11
作者 P.K.YADAV S.JAISWAL B.D.SHARMA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期993-1006,共14页
This paper is concerned with the flow of two immiscible fluids through a porous horizontal channel. The fluid in the upper region is the micropolar fluid/the Eringen fluid, and the fluid in the lower region is the New... This paper is concerned with the flow of two immiscible fluids through a porous horizontal channel. The fluid in the upper region is the micropolar fluid/the Eringen fluid, and the fluid in the lower region is the Newtonian viscous fluid. The flow is driven by a constant pressure gradient. The presence of micropolar fluids introduces additional rotational parameters. Also, the porous material considered in both regions has two different permeabilities. A direct method is used to obtain the analytical solution of the concerned problem. In the present problem, the effects of the couple stress,the micropolarity parameter, the viscosity ratio, and the permeability on the velocity profile and the microrotational velocity are discussed. It is found that all the physical parameters play an important role in controlling the translational velocity profile and the microrotational velocity. In addition, numerical values of the different flow parameters are computed. The effects of the different flow parameters on the flow rate and the wall shear stress are also discussed graphically. 展开更多
关键词 micropolar fluid immiscible fluid porous medium couple stress micropolarity parameter
下载PDF
二维有界区域内具Lions边值的magneto-micropolar系统解的存在性
12
作者 王涛 宋崇凯 《宁夏大学学报(自然科学版)》 CAS 北大核心 2009年第3期213-216,共4页
在二维有界区域上研究u,h具Lions边值条件,m具齐次边值条件的magneto-micropolar方程,用Galerkin方法证明了其弱解和强解的存在唯一性.
关键词 magneto-micropolar方程 弱解 强解 Lions边值条件
下载PDF
Wave propagation at interface of heat conducting micropolar solid and fluid media
13
作者 R.KUMAR M.KAUR S.C.RAJVANSHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第7期881-902,共22页
The present investigation is concerned with the wave propagation at an interface of a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space.Reflection and transmission... The present investigation is concerned with the wave propagation at an interface of a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space.Reflection and transmission phenomena of plane waves are investigated,which impinge obliquely at the plane interface between a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space.The incident wave is assumed to be striking at the interface after propagating through the micropolar generalized thermoelastic solid.The amplitude ratios of various reflected and transmitted waves are obtained in a closed form.It is found that they are a function of the angle of incidence and frequency and are affected by the elastic properties of the media.Micropolarity and thermal relaxation effects are shown on the amplitude ratios for a specific model.The results of some earlier literatures are also deduced from the present investigation. 展开更多
关键词 micropolar 固体 micropolar 液体 THERMOELASTIC 思考系数 传播系数 半空间
下载PDF
Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study 被引量:3
14
作者 H. WAQAS M. IMRAN +2 位作者 S. U. KHAN S. A. SHEHZAD M. A. MERAJ 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1255-1268,共14页
This article presents the mass and heat transport aspects in viscoelastic nanofluid flows under the presence of velocity slip conditions. To explore the nonNewtonian behavior, a Maxwell viscoelasticity-based micropola... This article presents the mass and heat transport aspects in viscoelastic nanofluid flows under the presence of velocity slip conditions. To explore the nonNewtonian behavior, a Maxwell viscoelasticity-based micropolar is considered. Moreover, a porous medium saturates the stretching sheet. A set of similarity variables is introduced to derive the dimensionless ordinary differential equations of velocity, concentration, and temperature profiles. The numerical solution is computed by using the MATLAB bvp4c package. The salient flow features of velocity, concentration, and temperature profiles are described and discussed through various graphs. It is observed that with an increase in the slip parameter, the micro-rotation velocity also increases. The temperature of nanoparticles gets maximum values by varying the viscoelastic parameter and the porosity parameter while an opposite trend is noted for the micro-rotation parameter. The local Nusselt number and the local Sherwood number increase by increasing the viscoelastic parameter, the porosity parameter, and the slip velocity parameter. The graphical computation is performed for a specified range of parameters, such as 0 ≤ M ≤ 2.5, 0 ≤σm ≤ 2.5, 0 ≤ K1 ≤ 1.5, 0.5 ≤ Pr ≤ 3.0, 0 ≤σ≤ 1.5, 0.5 ≤ Sc ≤ 2.0, 0.2 ≤ Nb ≤ 0.8, and 0.2 ≤ Nt ≤ 0.8. 展开更多
关键词 viscoelasticity-based micropolar nanofluid porous medium slip effect numerical method
下载PDF
Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach 被引量:3
15
作者 M. FARAJI-OSKOUIE A. NOROUZZADEH +1 位作者 R. ANSARI H. ROUHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第6期767-782,共16页
A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this... A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions. 展开更多
关键词 INTEGRAL MODEL of NONLOCAL ELASTICITY DIFFERENTIAL MODEL of NONLOCAL ELASTICITY micropolar theory finite element (FE) analysis Timoshenko nano-beam
下载PDF
Melting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation(absorption) 被引量:3
16
作者 M.A.A.MAHMOUD S.E.WAHEED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第8期979-992,共14页
The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is invest... The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of nonlinear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter.The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases. 展开更多
关键词 melting effect stagnation point micropolar fluid porous medium heat generation(absorption)
下载PDF
Modeling natural convection boundary layer flow of micropolar nanofluid over vertical permeable cone with variable wall temperature 被引量:2
17
作者 S.E.AHMED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第8期1171-1180,共10页
This paper discusses the natural convection boundary layer flow of a micropolar nanofluid over a vertical permeable cone with variable wall temperatures. Non-similar solutions are obtained. The nonlinearly coupled dif... This paper discusses the natural convection boundary layer flow of a micropolar nanofluid over a vertical permeable cone with variable wall temperatures. Non-similar solutions are obtained. The nonlinearly coupled differential equations under the boundary layer approximations governing the flow are solved numerically using an efficient, iterative, tri-diagonal, implicit finite difference method. Different experimental correlations for both nanofluid effective viscosity and nanofluid thermal conductivity are considered.It is found that as the vortex-viscosity parameter increases, both the velocity profiles and the local Nusselt number decrease. Also, among all the nanoparticles considered in this investigation, Cu gives a good convection. 展开更多
关键词 micropolar nanofluid 非类似的答案 有限差别方法 不一致的加热 O361 76D10 76R10
下载PDF
A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects 被引量:3
18
作者 S.A.SHEHZAD S.U.KHAN +1 位作者 Z.ABBAS A.RAUF 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第3期521-532,共12页
The dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The current predominately predictive modeling deals with the flow of the viscoelastic micropola... The dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The current predominately predictive modeling deals with the flow of the viscoelastic micropolar fluid in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov(C-C) heat and mass flux expressions. Besides, the thermal radiation effects are contributed in the energy equation and aspect of the radiation parameter, and the Prandtl number is specified by the one-parameter approach.The formulated expressions are converted to the dimensionless forms by relevant similarity functions. The analytical solutions to these expressions have been erected by the homotopy analysis method. The variations in physical quantities, including the velocity,the temperature, the effective local Nusselt number, the concentration of nanoparticles,and the local Sherwood number, have been observed under the influence of emerging parameters. The results have shown good accuracy compared with those of the existing literature. 展开更多
关键词 micropolar viscoelastic fluid nanoparticle thermal radiation Cattaneo-Christov(C-C)theory porous medium
下载PDF
Heat Absorption and Joule Heating Effects on Transient Free Convective Reactive Micropolar Fluid Flow Past a Vertical Porous Plate 被引量:3
19
作者 MD.Shamshuddin C.Balarama Krishna 《Fluid Dynamics & Materials Processing》 EI 2019年第3期207-231,共25页
Mathematical model for an unsteady,incompressible,electrically conducting micropolar fluid past a vertical plate through porous medium with constant plate velocity has been investigated in the present study.Heat absor... Mathematical model for an unsteady,incompressible,electrically conducting micropolar fluid past a vertical plate through porous medium with constant plate velocity has been investigated in the present study.Heat absorption,Joulian dissipation,and first-order chemical reaction is also considered.Under the assumption of low Reynolds number,the governing transport equations are rendered into non-dimensional form and the transformed first order differential equations are solved by employing an efficient finite element method.Influence of various flow parameters on linear velocity,microrotation velocity,temperature,and concentration are presented graphically.The effects of heat absorption and chemical reaction rate decelerate the flow is particularly near the wall.Skin friction and wall couple stress increases as heat absorption increases but the reverse phenomenon is observed in the case of chemical reaction rate.Wall mass transfer rate increases for chemical reaction and Sherwood number increases for heat absorption.Finite element study is very versatile in simulating unsteady micropolar rheo-materials processing transport phenomena.However,a relatively simple reaction effects restricted to first order. 展开更多
关键词 Heat absorption joule heating chemical reaction micropolar fluid finite element method
下载PDF
RESTUDY OF COUPLED FIELD THEORIES FOR MICROPOLAR CONTINUA (Ⅱ)-THERMOPIEZOELECTRICITY AND MAGNETOTHERMOELASTICITY 被引量:1
20
作者 DAI Tian-min(戴天民) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第3期249-258,共10页
The theories of thermopiezoelectricity and magnetoelasticity for micropolar continua have been systematically developed by W. Nowacki. In this paper, the theories are restudied. The reason why they were restricted to ... The theories of thermopiezoelectricity and magnetoelasticity for micropolar continua have been systematically developed by W. Nowacki. In this paper, the theories are restudied. The reason why they were restricted to linear cases is analyzed. The more general conservation principle of energy, energy balance equation and Hamilton principle of thermopiezoelectricity and magnetoelasticity for micropolar continua are established. The corresponding complete equations of motion and boundary conditions as well as balance equations of energy rate for local and nonlocal micropolar thermopiezoelectricity and magnetothermoelasticity are naturally derived. By means of two new functionals and total variation the boundary conditions of displacement, microrotation, electric potential and temperature are also given. 展开更多
关键词 NONLOCAL micropolar thermopiezoelectricity magnetothermoelasticity PRINCIPLE of energy CONSERVATION HAMILTON PRINCIPLE
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部