The local Petrov-Galerkin methods (MLPG) have attracted much attention due to their great flexibility in dealing with numerical model in elasticity problems. It is derived from the local weak form (WF) of the equilibr...The local Petrov-Galerkin methods (MLPG) have attracted much attention due to their great flexibility in dealing with numerical model in elasticity problems. It is derived from the local weak form (WF) of the equilibrium equations and by inducting the moving last square approach for trial and test functions in (WF) is discussed over local sub-domain. In this paper, we studied the effect of the configuration parameters of the size of the support or quadrature domain, and the effect of the size of the cells with nodes distribution number on the accuracy of the methods. It also presents a comparison of the results for the Shear stress, the deflections and the error in energy.展开更多
建立了无网格MLPG(Meshless Local Petrov-Galerkin)混合配点法求解二维弹性体位移、应力的数学模型,使用罚函数法添加本质边界条件,并将其应用到结构形状优化,结合遗传算法提出了一种新的连续体结构优化设计方法。对于节点支持域半径...建立了无网格MLPG(Meshless Local Petrov-Galerkin)混合配点法求解二维弹性体位移、应力的数学模型,使用罚函数法添加本质边界条件,并将其应用到结构形状优化,结合遗传算法提出了一种新的连续体结构优化设计方法。对于节点支持域半径的选取进行了重点探讨,提出一种动态支持域选择方法,建立了基于MLPG混合配点法的优化模型,对两个实际工程算例进行了形状优化,并与现有结果比较,验证了该方法的有效性。展开更多
Two-dimensional large deformation analysis of hyperelastic and elasto-plastic solids based on the Meshless Local Petrov-Galerkin method (MLPG) is presented. A material configuration based the nonlinear MLPG formulat...Two-dimensional large deformation analysis of hyperelastic and elasto-plastic solids based on the Meshless Local Petrov-Galerkin method (MLPG) is presented. A material configuration based the nonlinear MLPG formulation is introduced for the large deformation analysis of both path-dependent and path-independent materials. The supports of the MLS approximation functions cover the same sets of nodes during material deformation, thus the shape function needs to be computed only in the initial stage. The multiplicative hyperelasto-plastic constitutive model is adopted to avoid objective time integration for stress update in large rota- tion. With this constitutive model, the computational formulations for path-dependent and path-independent materials become identical. Computational efficiency of the nonlinear MLPG method is discussed and optimized in several aspects to make the MLPG an O(N) algorithm. The numerical examples indicate that the MLPG method can solve large deformation problems accurately. Moreover, the MLPG computations enjoy better convergence rate than the FEM under very large particle distortion.展开更多
The goal of this study is to solve the neutron diffusion equation by using a meshless method and evaluate its performance compared to traditional methods. This paper proposes a novel method based on coupling the meshl...The goal of this study is to solve the neutron diffusion equation by using a meshless method and evaluate its performance compared to traditional methods. This paper proposes a novel method based on coupling the meshless local Petrov–Galerkin approach and the moving least squares approximation. This computational procedure consists of two main steps. The first involved applying the moving least squares approximation to construct the shape function based on the problem domain. Then, the obtained shape function was used in the meshless local Petrov–Galerkin method to solve the neutron diffusion equation.Because the meshless method is based on eliminating the mesh-based topologies, the problem domain was represented by a set of arbitrarily distributed nodes. There is no need to use meshes or elements for field variable interpolation. The process of node generation is simply and fully automated, which can save time. As this method is a local weak form, it does not require any background integration cells and all integrations are performed locally over small quadrature domains. To evaluate the proposed method,several problems were considered. The results were compared with those obtained from the analytical solution and a Galerkin finite element method. In addition, the proposed method was used to solve neutronic calculations in thesmall modular reactor. The results were compared with those of the citation code and reference values. The accuracy and precision of the proposed method were acceptable. Additionally, adding the number of nodes and selecting an appropriate weight function improved the performance of the meshless local Petrov–Galerkin method. Therefore, the proposed method represents an accurate and alternative method for calculating core neutronic parameters.展开更多
无网格局部彼得洛夫-伽辽金(meshless local Petrov-Galerkin,MLPG)法是一种具有代表性的无网格方法,在计算力学领域得到广泛应用.然而,这种方法在边界上需执行积分运算,通常很难处理不规则求解域问题.为了克服MLPG法的这种局限性,提出...无网格局部彼得洛夫-伽辽金(meshless local Petrov-Galerkin,MLPG)法是一种具有代表性的无网格方法,在计算力学领域得到广泛应用.然而,这种方法在边界上需执行积分运算,通常很难处理不规则求解域问题.为了克服MLPG法的这种局限性,提出了无网格局部强弱(meshless local strong-weak,MLSW)法.MLSW法采用MLPG法离散内部求解域,采用无网格介点(meshless intervention-point,MIP)法施加自然边界条件,并采用配点法施加本质边界条件,避免执行边界积分运算,可适用于求解各类复杂的不规则域问题.从理论上讲,这种结合式方法,既保持了MLPG法稳定而精确计算的优势,同时兼备配点型方法在处理复杂结构问题时简洁而灵活的优势,实现了弱式法和强式法的优势互补.此外,MLSW法采用移动最小二乘核(moving least squares core,MLSc)近似法来构造形函数,是对传统移动最小二乘(moving least squares,MLS)近似法的一种改进.MLSc使用核基函数代替通常的基函数,有利于数值求解的精确性和稳定性,而且其导数近似计算变得更为简单.数值算例结果初步表明:这种新方法实施简单,求解稳定、精确,表现出适合工程运用的潜力.展开更多
研究了无网格局部Petrov-Galerkin方法MLPG(Meshless Local Petrov-Galerkin Method)的并行算法与并行实现过程。将MLPG方法推广到弹性动力学问题,研究了MLPG方法中节点搜索、积分点搜索、数值积分及方程组求解等过程的并行算法,并给出...研究了无网格局部Petrov-Galerkin方法MLPG(Meshless Local Petrov-Galerkin Method)的并行算法与并行实现过程。将MLPG方法推广到弹性动力学问题,研究了MLPG方法中节点搜索、积分点搜索、数值积分及方程组求解等过程的并行算法,并给出了MLPG方法并行计算的具体实现过程。两个数值算例验证了MLPG并行算法的有效性;计算结果表明,MLPG方法的并行计算具有很好的并行性能和可扩展性。展开更多
文摘The local Petrov-Galerkin methods (MLPG) have attracted much attention due to their great flexibility in dealing with numerical model in elasticity problems. It is derived from the local weak form (WF) of the equilibrium equations and by inducting the moving last square approach for trial and test functions in (WF) is discussed over local sub-domain. In this paper, we studied the effect of the configuration parameters of the size of the support or quadrature domain, and the effect of the size of the cells with nodes distribution number on the accuracy of the methods. It also presents a comparison of the results for the Shear stress, the deflections and the error in energy.
文摘建立了无网格MLPG(Meshless Local Petrov-Galerkin)混合配点法求解二维弹性体位移、应力的数学模型,使用罚函数法添加本质边界条件,并将其应用到结构形状优化,结合遗传算法提出了一种新的连续体结构优化设计方法。对于节点支持域半径的选取进行了重点探讨,提出一种动态支持域选择方法,建立了基于MLPG混合配点法的优化模型,对两个实际工程算例进行了形状优化,并与现有结果比较,验证了该方法的有效性。
基金The project supported by the National Natural Science Foundation of China (10472051). The English text was polished by Keren Wang
文摘Two-dimensional large deformation analysis of hyperelastic and elasto-plastic solids based on the Meshless Local Petrov-Galerkin method (MLPG) is presented. A material configuration based the nonlinear MLPG formulation is introduced for the large deformation analysis of both path-dependent and path-independent materials. The supports of the MLS approximation functions cover the same sets of nodes during material deformation, thus the shape function needs to be computed only in the initial stage. The multiplicative hyperelasto-plastic constitutive model is adopted to avoid objective time integration for stress update in large rota- tion. With this constitutive model, the computational formulations for path-dependent and path-independent materials become identical. Computational efficiency of the nonlinear MLPG method is discussed and optimized in several aspects to make the MLPG an O(N) algorithm. The numerical examples indicate that the MLPG method can solve large deformation problems accurately. Moreover, the MLPG computations enjoy better convergence rate than the FEM under very large particle distortion.
文摘The goal of this study is to solve the neutron diffusion equation by using a meshless method and evaluate its performance compared to traditional methods. This paper proposes a novel method based on coupling the meshless local Petrov–Galerkin approach and the moving least squares approximation. This computational procedure consists of two main steps. The first involved applying the moving least squares approximation to construct the shape function based on the problem domain. Then, the obtained shape function was used in the meshless local Petrov–Galerkin method to solve the neutron diffusion equation.Because the meshless method is based on eliminating the mesh-based topologies, the problem domain was represented by a set of arbitrarily distributed nodes. There is no need to use meshes or elements for field variable interpolation. The process of node generation is simply and fully automated, which can save time. As this method is a local weak form, it does not require any background integration cells and all integrations are performed locally over small quadrature domains. To evaluate the proposed method,several problems were considered. The results were compared with those obtained from the analytical solution and a Galerkin finite element method. In addition, the proposed method was used to solve neutronic calculations in thesmall modular reactor. The results were compared with those of the citation code and reference values. The accuracy and precision of the proposed method were acceptable. Additionally, adding the number of nodes and selecting an appropriate weight function improved the performance of the meshless local Petrov–Galerkin method. Therefore, the proposed method represents an accurate and alternative method for calculating core neutronic parameters.
文摘无网格局部彼得洛夫-伽辽金(meshless local Petrov-Galerkin,MLPG)法是一种具有代表性的无网格方法,在计算力学领域得到广泛应用.然而,这种方法在边界上需执行积分运算,通常很难处理不规则求解域问题.为了克服MLPG法的这种局限性,提出了无网格局部强弱(meshless local strong-weak,MLSW)法.MLSW法采用MLPG法离散内部求解域,采用无网格介点(meshless intervention-point,MIP)法施加自然边界条件,并采用配点法施加本质边界条件,避免执行边界积分运算,可适用于求解各类复杂的不规则域问题.从理论上讲,这种结合式方法,既保持了MLPG法稳定而精确计算的优势,同时兼备配点型方法在处理复杂结构问题时简洁而灵活的优势,实现了弱式法和强式法的优势互补.此外,MLSW法采用移动最小二乘核(moving least squares core,MLSc)近似法来构造形函数,是对传统移动最小二乘(moving least squares,MLS)近似法的一种改进.MLSc使用核基函数代替通常的基函数,有利于数值求解的精确性和稳定性,而且其导数近似计算变得更为简单.数值算例结果初步表明:这种新方法实施简单,求解稳定、精确,表现出适合工程运用的潜力.
文摘研究了无网格局部Petrov-Galerkin方法MLPG(Meshless Local Petrov-Galerkin Method)的并行算法与并行实现过程。将MLPG方法推广到弹性动力学问题,研究了MLPG方法中节点搜索、积分点搜索、数值积分及方程组求解等过程的并行算法,并给出了MLPG方法并行计算的具体实现过程。两个数值算例验证了MLPG并行算法的有效性;计算结果表明,MLPG方法的并行计算具有很好的并行性能和可扩展性。