期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
冶金机理与贝叶斯优化XGBoost融合的VD炉精炼终点钢液温度预测
1
作者
徐吉
信自成
+3 位作者
兰模
林文辉
张波
刘青
《工程科学与技术》
EI
CAS
CSCD
北大核心
2024年第6期63-72,共10页
在炼钢生产过程中,真空脱气精炼(VD)炉是生产高品质钢的重要设备之一,其精炼终点温度对钢液质量、生产效率和连铸顺行具有重要影响。为了实现对VD炉精炼终点钢液温度的精准控制,本文采用冶金机理和贝叶斯优化极端梯度提升(metallurgical...
在炼钢生产过程中,真空脱气精炼(VD)炉是生产高品质钢的重要设备之一,其精炼终点温度对钢液质量、生产效率和连铸顺行具有重要影响。为了实现对VD炉精炼终点钢液温度的精准控制,本文采用冶金机理和贝叶斯优化极端梯度提升(metallurgical mechanism–Bayesian optimization–extreme gradient boosting,MM–BO–XGBoost)相结合的方法建立钢液温度预测模型。首先,基于VD炉冶金机理解析,确定影响精炼终点钢液温度的主要因素;其次,使用3σ原则对实际生产数据进行预处理,剔除异常值,并采用皮尔逊相关性分析剔除对钢液温度影响较小的因素,从而确定模型的输入变量;再次,将冶金机理与XGBoost模型进行融合,对输入变量的初始特征重要性进行部分放大;最后,针对XGBoost模型的超参数寻优问题,采用贝叶斯优化(BO)对其进行超参数寻优,由此构建了MM–BO–XGBoost模型。在模型仿真过程中,对本文模型同时使用网格搜索和随机搜索进行超参数寻优,旨在对比和验证BO寻优的效果;此外,使用本文提供的数据对已有的冶金机理模型、多元线性回归模型和反向传播神经网络模型进行仿真,并与MM–BO–XGBoost模型进行性能对比。结果表明:本文提出的MM–BO–XGBoost模型的超参数优化效果最好;本文模型的预测VD炉终点钢液温度在±10℃和±15℃误差范围内的命中率分别为87.81%和96.42%,均高于其他对比模型,综合性能最优。本文构建的VD炉钢液精炼终点温度预测模型,对实现钢液温度精准控制、降低生产成本和提高VD炉精炼效率具有重要的现实意义。
展开更多
关键词
VD炉精炼
钢液温度预测
机理分析
mm–bo–xgboost模型
下载PDF
职称材料
题名
冶金机理与贝叶斯优化XGBoost融合的VD炉精炼终点钢液温度预测
1
作者
徐吉
信自成
兰模
林文辉
张波
刘青
机构
北京科技大学绿色低碳钢铁冶金全国重点实验室
江苏金恒信息科技股份有限公司
吕梁建龙实业有限公司
出处
《工程科学与技术》
EI
CAS
CSCD
北大核心
2024年第6期63-72,共10页
基金
国家自然科学基金项目(52374321,51974023)
建龙–北科大青年科技创新基金项目(20231235)
厂协项目(20230922)。
文摘
在炼钢生产过程中,真空脱气精炼(VD)炉是生产高品质钢的重要设备之一,其精炼终点温度对钢液质量、生产效率和连铸顺行具有重要影响。为了实现对VD炉精炼终点钢液温度的精准控制,本文采用冶金机理和贝叶斯优化极端梯度提升(metallurgical mechanism–Bayesian optimization–extreme gradient boosting,MM–BO–XGBoost)相结合的方法建立钢液温度预测模型。首先,基于VD炉冶金机理解析,确定影响精炼终点钢液温度的主要因素;其次,使用3σ原则对实际生产数据进行预处理,剔除异常值,并采用皮尔逊相关性分析剔除对钢液温度影响较小的因素,从而确定模型的输入变量;再次,将冶金机理与XGBoost模型进行融合,对输入变量的初始特征重要性进行部分放大;最后,针对XGBoost模型的超参数寻优问题,采用贝叶斯优化(BO)对其进行超参数寻优,由此构建了MM–BO–XGBoost模型。在模型仿真过程中,对本文模型同时使用网格搜索和随机搜索进行超参数寻优,旨在对比和验证BO寻优的效果;此外,使用本文提供的数据对已有的冶金机理模型、多元线性回归模型和反向传播神经网络模型进行仿真,并与MM–BO–XGBoost模型进行性能对比。结果表明:本文提出的MM–BO–XGBoost模型的超参数优化效果最好;本文模型的预测VD炉终点钢液温度在±10℃和±15℃误差范围内的命中率分别为87.81%和96.42%,均高于其他对比模型,综合性能最优。本文构建的VD炉钢液精炼终点温度预测模型,对实现钢液温度精准控制、降低生产成本和提高VD炉精炼效率具有重要的现实意义。
关键词
VD炉精炼
钢液温度预测
机理分析
mm–bo–xgboost模型
Keywords
VD furnace refining
steel temperature prediction
mechanism analysis
mm
-
bo
-
xgboost
model
分类号
TF769 [冶金工程—钢铁冶金]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
冶金机理与贝叶斯优化XGBoost融合的VD炉精炼终点钢液温度预测
徐吉
信自成
兰模
林文辉
张波
刘青
《工程科学与技术》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部