Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of oce...Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of ocean mesoscale eddy. An underwater acoustic modeI-MMPE was used to simulate the acoustic propagation under the influence of different types, different intensities and positions of eddies, and different frequencies and depths of sources. It is found that warm-core eddy can make the convergence zone "move back" and the width of it increases, while cold-core eddy can make the convergence zone "move forward" and the width of it decreases. The bigger the intensity of eddy, the more notable the "forward "or "back "effect. Sound source located depths and source frequencies can change the acoustic propagation characteristics in the eddy area.展开更多
基金the National Natural Science Foundation of China (Grants No. 41176085 and 41075045), for financially supporting this research
文摘Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of ocean mesoscale eddy. An underwater acoustic modeI-MMPE was used to simulate the acoustic propagation under the influence of different types, different intensities and positions of eddies, and different frequencies and depths of sources. It is found that warm-core eddy can make the convergence zone "move back" and the width of it increases, while cold-core eddy can make the convergence zone "move forward" and the width of it decreases. The bigger the intensity of eddy, the more notable the "forward "or "back "effect. Sound source located depths and source frequencies can change the acoustic propagation characteristics in the eddy area.