Pyrolysis is one of the thermal cracking methods to convert hydrocarbon to liquid fuel.The quantity and quality of the process are dependent on several condition including temperature,reaction time,catalyst,and the ty...Pyrolysis is one of the thermal cracking methods to convert hydrocarbon to liquid fuel.The quantity and quality of the process are dependent on several condition including temperature,reaction time,catalyst,and the type of reactor.Meanwhile,a gasoline fraction was maximum product to be considered in the pyrolisis process.Therefore,this study aims to increase the gasoline fraction in liquid fuel using stepwise pyrolysis with a long bed catalytic reactor downstream(LBCR).The LBCR downstream was equipped with the top and bottom outlet and the fed source was mixed municipal solid waste(MMSW).The activated natural dolomite at 500℃ was used to allow the repetition of the secondary cracking.Also,the reactor temperature was setup at around 200℃-300℃ and the pyrolizer was 400℃.To analyze the gasoline fraction and physical properties of liquid fuel,Gas Chromatography-Mass Spectroscopy(GC-MS)and ASTM standard were employed.The experimental results showed there was a significant increase in the gasoline fraction of liquid fuels compared to using direct catalytic cracking and absence of catalysts.By using a LBCR at 250℃,the liquid fuel obtained at top outlet(TO)and bottom outlet(BO)have 84.08 and 56.94 percent peak area of gasoline fraction(C5-C12),respectively.The average value(TO and BO)of the fraction at 250℃ by LBCR was 70.51 percent peak area and it was increased by about 93.6%and 51.14%compared to without catalyst and direct catalytic,respectively.Furthermore,pyrolytic liquid oils were found to have kinematic viscosity of 2.979 and 0.789 cSt,density of 0.781 and 0.782 g/cm^(3),and flash point<−5℃ for BO-250 and TO-250 liquid fuel,respectively.These results showed BO liquid fuel was comparable to diesel conventional fuel while TO liquid fuel was comparable to gasoline.Evidently,the presence of LBCR made a major contribution to generate multi secondary cracking and to produce more gasoline fraction from mixed MMSW feedstock,as well as to increase the physical properties of liquid fuel.展开更多
利用热重技术研究了模化城市生活垃圾(model municipal solid waste,MMSW)的热解和燃烧过程的特性。结果表明,在小于300℃的温度范围内,热解和燃烧的失重曲线基本一致,不同升温速率对失重特性有影响。利用分峰拟合处理技术对MMSW热处理...利用热重技术研究了模化城市生活垃圾(model municipal solid waste,MMSW)的热解和燃烧过程的特性。结果表明,在小于300℃的温度范围内,热解和燃烧的失重曲线基本一致,不同升温速率对失重特性有影响。利用分峰拟合处理技术对MMSW热处理过程的DSC曲线进行分析,发现MMSW燃烧和热解的失重特性基本上是所含物质失重特性的叠加。对MMSW热处理过程进行动力学分析,计算结果表明反应级数在1.2-1.8之间,化学反应的平均活化能在30-50kJ/mol之间。展开更多
在对国内外城市生活垃圾组成及变化规律研究的基础上,配制了能代表我国城市生活垃圾组成特性的模化城市生活垃圾(Model Municipal Solid Waste,MMSW)。采用TGA-FTIR联用技术模拟燃烧、热解工况,研究了不同升温速率、不同中途恒温时间等...在对国内外城市生活垃圾组成及变化规律研究的基础上,配制了能代表我国城市生活垃圾组成特性的模化城市生活垃圾(Model Municipal Solid Waste,MMSW)。采用TGA-FTIR联用技术模拟燃烧、热解工况,研究了不同升温速率、不同中途恒温时间等条件下MMSW的氯释放特性。研究结果表明:MMSW的氯起始释放温度和氯释放终止温度与MMSW热处理的气氛、升温速率均有关系,氯起始释放温度在350~420℃范围内变化;在燃烧、热解等条件下,MMSW中的氯基本以HCI气态形式释放,起始释放温度在燃烧条件下要比无氧条件(热解)下要低20~30℃;升温速率越快,氯起始释放温度越高,氯完全释放的时间间隔越短。研究还表明,在380~420℃恒温时间越长,越有利于MMSW中氯的完全释放。展开更多
文摘Pyrolysis is one of the thermal cracking methods to convert hydrocarbon to liquid fuel.The quantity and quality of the process are dependent on several condition including temperature,reaction time,catalyst,and the type of reactor.Meanwhile,a gasoline fraction was maximum product to be considered in the pyrolisis process.Therefore,this study aims to increase the gasoline fraction in liquid fuel using stepwise pyrolysis with a long bed catalytic reactor downstream(LBCR).The LBCR downstream was equipped with the top and bottom outlet and the fed source was mixed municipal solid waste(MMSW).The activated natural dolomite at 500℃ was used to allow the repetition of the secondary cracking.Also,the reactor temperature was setup at around 200℃-300℃ and the pyrolizer was 400℃.To analyze the gasoline fraction and physical properties of liquid fuel,Gas Chromatography-Mass Spectroscopy(GC-MS)and ASTM standard were employed.The experimental results showed there was a significant increase in the gasoline fraction of liquid fuels compared to using direct catalytic cracking and absence of catalysts.By using a LBCR at 250℃,the liquid fuel obtained at top outlet(TO)and bottom outlet(BO)have 84.08 and 56.94 percent peak area of gasoline fraction(C5-C12),respectively.The average value(TO and BO)of the fraction at 250℃ by LBCR was 70.51 percent peak area and it was increased by about 93.6%and 51.14%compared to without catalyst and direct catalytic,respectively.Furthermore,pyrolytic liquid oils were found to have kinematic viscosity of 2.979 and 0.789 cSt,density of 0.781 and 0.782 g/cm^(3),and flash point<−5℃ for BO-250 and TO-250 liquid fuel,respectively.These results showed BO liquid fuel was comparable to diesel conventional fuel while TO liquid fuel was comparable to gasoline.Evidently,the presence of LBCR made a major contribution to generate multi secondary cracking and to produce more gasoline fraction from mixed MMSW feedstock,as well as to increase the physical properties of liquid fuel.
文摘利用热重技术研究了模化城市生活垃圾(model municipal solid waste,MMSW)的热解和燃烧过程的特性。结果表明,在小于300℃的温度范围内,热解和燃烧的失重曲线基本一致,不同升温速率对失重特性有影响。利用分峰拟合处理技术对MMSW热处理过程的DSC曲线进行分析,发现MMSW燃烧和热解的失重特性基本上是所含物质失重特性的叠加。对MMSW热处理过程进行动力学分析,计算结果表明反应级数在1.2-1.8之间,化学反应的平均活化能在30-50kJ/mol之间。
文摘在对国内外城市生活垃圾组成及变化规律研究的基础上,配制了能代表我国城市生活垃圾组成特性的模化城市生活垃圾(Model Municipal Solid Waste,MMSW)。采用TGA-FTIR联用技术模拟燃烧、热解工况,研究了不同升温速率、不同中途恒温时间等条件下MMSW的氯释放特性。研究结果表明:MMSW的氯起始释放温度和氯释放终止温度与MMSW热处理的气氛、升温速率均有关系,氯起始释放温度在350~420℃范围内变化;在燃烧、热解等条件下,MMSW中的氯基本以HCI气态形式释放,起始释放温度在燃烧条件下要比无氧条件(热解)下要低20~30℃;升温速率越快,氯起始释放温度越高,氯完全释放的时间间隔越短。研究还表明,在380~420℃恒温时间越长,越有利于MMSW中氯的完全释放。