期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多源数据的全国可燃物类型划分方法 被引量:3
1
作者 李晓彤 刘倩 +2 位作者 覃先林 刘树超 王崇阳 《遥感学报》 EI CSCD 北大核心 2022年第3期480-492,共13页
为满足全国可燃物类型制图的需要,在国内外前人的研究工作基础上,建立了全国尺度的可燃物分类体系,并基于MODIS数据产品和全国植被区划数据,结合地理信息空间分析技术,对全国森林、灌木和草本等3类可燃物进行精细划分和成图。利用实地... 为满足全国可燃物类型制图的需要,在国内外前人的研究工作基础上,建立了全国尺度的可燃物分类体系,并基于MODIS数据产品和全国植被区划数据,结合地理信息空间分析技术,对全国森林、灌木和草本等3类可燃物进行精细划分和成图。利用实地调查数据和其他数据产品,采用直接验证和交叉验证相结合方式对可燃物类型分类结果进行精度评价。评价结果表明,一级可燃物类型总精度为90.89%,Kappa系数为0.81;二级可燃物类型总精度84.14%,Kappa系数为0.74;三级可燃物类型总精度为68.16%,Kappa系数0.6。利用多源数据和地理信息空间分析技术相结合,有效地实现了在全国尺度上的森林、灌木和草本等3类可燃物类型的精细划分,为森林草原火灾的预防管理提供技术支持。 展开更多
关键词 遥感 可燃物类型 遥感分类 空间分析技术 MCD12Q1产品 mod44b产品
原文传递
Construction of aboveground biomass models with remote sensing technology in the intertropical zone in Mexico
2
作者 AGUIRRE-SALADO Carlos Arturo TREVINO-GARZA Eduardo Javier +5 位作者 AGUIRRE-CALDERON Oscar Alberto JIMENEZ-PiEREZ Javier GONZALEZ-TAGLE Marco Aurelio VALDEZ-LAZALDE Jose Rene M IRANDA-ARAGON Liliana AGUIRRE-SALADO Alejandro lvan 《Journal of Geographical Sciences》 SCIE CSCD 2012年第4期669-680,共12页
Spatially-explicit estimation of aboveground biomass (AGB) plays an important role to generate action policies focused in climate change mitigation, since carbon (C) retained in the biomass is vital for regulating... Spatially-explicit estimation of aboveground biomass (AGB) plays an important role to generate action policies focused in climate change mitigation, since carbon (C) retained in the biomass is vital for regulating Earth's temperature. This work estimates AGB using both chlorophyll (red, near infrared) and moisture (middle infrared) based normalized vegetation indices constructed with MCD43A4 MODerate-resolution Imaging Spectroradiometer (MODIS) and MOD44B vegetation continuous fields (VCF) data. The study area is located in San Luis Potosi, Mexico, a region that comprises a part of the upper limit of the intertropical zone. AGB estimations were made using both individual tree data from the National Forest Inventory of Mexico and allometric equations reported in scientific literature. Linear and nonlinear (expo- nential) models were fitted to find their predictive potential when using satellite spectral data as explanatory variables. Highly-significant correlations (p = 0.01 ) were found between all the explaining variables tested. NDVI62, linked to chlorophyll content and moisture stress, showed the highest correlation. The best model (nonlinear) showed an index of fit (Pseudo - r2) equal to 0.77 and a root mean square error equal to 26.00 Mg/ha using NDVI62 and VCF as explanatory variables. Validation correlation coefficients were similar for both models: linear (r = 0.87**) and nonlinear (r = 0.86**). 展开更多
关键词 MODIS MCD43A4 mod44b forest inventory regression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部