To better understand Earth's present tectonic style-plate tectonics—and how it may have evolved from single plate(stagnant lid) tectonics, it is instructive to consider how common it is among similar bodies in th...To better understand Earth's present tectonic style-plate tectonics—and how it may have evolved from single plate(stagnant lid) tectonics, it is instructive to consider how common it is among similar bodies in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment(plate) motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes;any other tectonic style is usefully called "stagnant lid" or "fragmented lid". In 2015 humanity completed a 50+ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects,which we informally call "planetoids" and use especially images of these bodies to infer their tectonic activity. The four largest planetoids are enveloped in gas and ice(Jupiter, Saturn, Uranus, and Neptune)and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range widely in density, from 1000 to 5500 kg/m^3. A gap separates 8 silicate planetoids with ρ = 3000 kg/m^3 or greater from 20 icy planetoids(including the gaseous and icy giant planets) with ρ = 2200 kg/m^3 or less. We define the "Tectonic Activity Index"(TAI), scoring each body from 0 to 3 based on evidence for recent volcanism, deformation, and resurfacing(inferred from impact crater density). Nine planetoids with TAI = 2 or greater are interpreted to be tectonically and convectively active whereas 17 with TAI <2 are inferred to be tectonically dead. We further infer that active planetoids have lithospheres or icy shells overlying asthenosphere or water/weak ice. TAI of silicate(rocky) planetoids positively correlates with their inferred Rayleigh number. We conclude that some type of stagnant lid tectonics is the dominant mode of heat loss and that plate tectonics is unusual. To make progress understanding Earth's tectonic history and the tectonic style of active exoplanets, we need to better understand the range and controls of active stagnant lid tectonics.展开更多
Understanding the internal composition of a celestial body is fundamental for formulating theories regarding its origin.Deep knowledge of the distribution of mass under the body’s crust can be achieved by analyzing i...Understanding the internal composition of a celestial body is fundamental for formulating theories regarding its origin.Deep knowledge of the distribution of mass under the body’s crust can be achieved by analyzing its moments of inertia and gravity field.In this regard,the two moons of the Martian system have not yet been closely studied and continue to pose questions regarding their origin to the space community;thus,they deserve further characterization.The Martian Moons eXploration mission will be the first of its kind to sample and study Phobos over a prolonged period.This study aims to demonstrate that the adoption of periodic and quasi-periodic retrograde trajectories would be beneficial for the scientific value of the mission.Here,a covariance analysis was implemented to compare the estimation of high-order gravitational field coefficients from different orbital geometries and for different sets of processed observables.It was shown that the adoption of low-altitude non-planar quasi-satellite orbits would help to refine the knowledge of the moon’s libration angle and gravitational field.展开更多
Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments an...Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research.展开更多
Galileo mission detected the magnetic anomalies originated from Galilean moons.These anomalies are likely generated in the moons' interiors,under the influence of a strong ambient Jovian field.Among various possib...Galileo mission detected the magnetic anomalies originated from Galilean moons.These anomalies are likely generated in the moons' interiors,under the influence of a strong ambient Jovian field.Among various possible generation mechanisms of the anomalies,we focus on magneto-convection and dynamos in the interiors via numerical simulation.To mimic the electromagnetic environment of the moons,we introduce in our numerical model an external uniform magnetic field B0 with a fixed orientation but varying field strength.Our results show that a finite B0 can substantially alter the dynamo processes inside the core.When the ambient field strength B0 increases to approximately 40% of the field generated by the pure dynamo action,the convective state in the core changes significantly:the convective flow decreases by 80% in magnitude,but the differential rotation becomes stronger in much of the fluid layer,leading to a stronger field generated in the core.The field morphologies inside the core tend to align with the ambient field,while the flow patterns show the symmetry-breaking effect under the influence of B0.Furthermore,the generated field tends to be temporally more stable.展开更多
Lunar optical polarization is a fascinating phenomenon that occurs when sunlight reflects off the surface of the Moon and becomes polarized.This study employs a novel split-focus plane polarimetric camera to conduct t...Lunar optical polarization is a fascinating phenomenon that occurs when sunlight reflects off the surface of the Moon and becomes polarized.This study employs a novel split-focus plane polarimetric camera to conduct the initial white light polarimetric observations on the near side of the Moon.We obtained the linear degree of polarization(DOP)parameters of white light by observation from the eastern and western hemispheres of the Moon.The findings indicate that the white light polarization is lower in the lunar highland than in the lunar maria overall.Combining the analysis of lunar soil samples,we noticed and determined that the DOP parameters of white light demonstrate high consistency with iron oxide on the Moon.This study may serve as a new diagnostic tool for the Moon.展开更多
Aiming at improving the survey efficiency of the Wide Field Survey Telescope, we have developed a basic scheduling strategy that takes into account the telescope characteristics, observing conditions, and weather cond...Aiming at improving the survey efficiency of the Wide Field Survey Telescope, we have developed a basic scheduling strategy that takes into account the telescope characteristics, observing conditions, and weather conditions at the Lenghu site. The sky area is divided into rectangular regions, referred to as “tiles,” with a size of2°. 577 × 2°. 634 slightly smaller than the focal area of the mosaic CCDs. These tiles are continuously filled in annulars parallel to the equator. The brightness of the sky background, which varies with the moon phase and distance from the moon, plays a significant role in determining the accessible survey fields. Approximately 50connected tiles are grouped into one block for observation. To optimize the survey schedule, we perform simulations by taking into account the length of exposures, data readout, telescope slewing, and all relevant observing conditions. We utilize the Greedy Algorithm for scheduling optimization. Additionally, we propose a dedicated dithering pattern to cover the gaps between CCDs and the four corners of the mosaic CCD array, which are located outside of the 3° field of view. This dithering pattern helps to achieve relatively uniform exposure maps for the final survey outputs.展开更多
The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around...The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.展开更多
Every year on 22 April, we have celebrated Earth Day and the beautiful planet we call home. Earth Day, established in 1970, has been used to highlight our planet’s environmental challenges and raise awareness of the ...Every year on 22 April, we have celebrated Earth Day and the beautiful planet we call home. Earth Day, established in 1970, has been used to highlight our planet’s environmental challenges and raise awareness of the importance of protecting our world for future generations [1]. To provide the protection of our planet, we should explain Earth’s environmental challenges to the best of our knowledge in frames of contemporary Geophysics. This paper gives a short overview of the developed Hypersphere World-Universe Model (WUM) and pay particular attention to the principal role of Dark Matter (DM) in the Earth’s life. In this manuscript, we discuss different aspects of the Earth: a condition of Young Earth before the Beginning of life on It;Internal Structure;“The 660-km Boundary” that we named Geomagma;Random Variations of Earth’s Rotational Speed on a daily basis;Origin of Moon;Expanding Earth;Internal Heating;Faint Young Sun paradox;Geocorona and Planetary Coronas;High-Energy Atmospheric Physics. WUM proposed principally different ways to solve the problems of Internal Heating, Origin of the Moon, and Faint Young Sun paradox based on DM core of the Earth. The Model revealed the fact that the Sun Activity causes the Geomagma Activity and, as a consequence, Random Variations of Earth’s Rotational Speed by the varying Sun’s magnetic field.展开更多
Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. Accordin...Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. According to Kepler’s 1st Law, “orbit of a planet with respect to the Sun is an ellipse, with the Sun at one of the two foci.” Orbit of the Moon with respect to Earth is also distinctly elliptical, but this ellipse has a varying eccentricity as the Moon comes closer to and goes farther away from the Earth in a harmonic style along a full cycle of this ellipse. In this paper, our research results are summarized, where it is first mathematically shown that the “distance between points around any two different circles in three-dimensional space” is equivalent to the “distance of points around a vector ellipse to another fixed or moving point, as in two-dimensional space”. What is done is equivalent to showing that bodies moving on two different circular orbits in space vector-wise behave as if moving on an elliptical path with respect to each other, and virtually seeing each other as positioned at an instantaneously stationary point in space on their relative ecliptic plane, whether they are moving with the same angular velocity, or different but fixed angular velocities, or even with different and changing angular velocities with respect to their own centers of revolution. This mathematical revelation has the potential to lead to far reaching discoveries in physics, enabling more insight into forces of nature, with a formulation of a new fundamental model regarding the motions of bodies in the Universe, including the Sun, Planets, and Satellites in the Solar System and elsewhere, as well as at particle and subatomic level. Based on the demonstrated mathematical analysis, as they exhibit almost fixed elliptic orbits relative to one another over time, the assertion is made that the Sun, the Earth, and the Moon must each be revolving in their individual circular orbits of revolution in space. With this expectation, individual orbital parameters of the Sun, the Earth, and the Moon are calculated based on observed Earth to Sun and Earth to Moon distance data, also using analytical methods developed as part of this research to an approximation. This calculation and analysis process have revealed additional results aligned with observation, and this also supports our assertion that the Sun, the Earth, and the Moon must actually be revolving in individual circular orbits.展开更多
Mooncake gambling is a valuable Chinese tradition with its origins in the Ming Dynasty,reportedly planned by the legendary explorer Zheng He.Initially crafted to entertain sailors during their extended sea voyages,the...Mooncake gambling is a valuable Chinese tradition with its origins in the Ming Dynasty,reportedly planned by the legendary explorer Zheng He.Initially crafted to entertain sailors during their extended sea voyages,the game also aimed to ease the homesickness experienced by Zheng He’s troops.Over time,this pastime has transformed into a beloved custom in the Mid-Autumn Festival.展开更多
《You Raise Me Up》是一首来自于Secret Garden神秘园的著名歌曲,收录于他们2002年发行的专辑《Once In A Red Moon》中。Secret Garden神秘园组合是由爱尔兰女小提琴手Fionnuala Sherry菲奥诺拉·莎莉和挪威作曲家兼键盘手Rolf Lo...《You Raise Me Up》是一首来自于Secret Garden神秘园的著名歌曲,收录于他们2002年发行的专辑《Once In A Red Moon》中。Secret Garden神秘园组合是由爱尔兰女小提琴手Fionnuala Sherry菲奥诺拉·莎莉和挪威作曲家兼键盘手Rolf Lovland罗尔夫·劳弗兰组建的著名新世纪音乐风格乐队。展开更多
Profs.Yang Jun(杨军)and Hu Yongyun(胡永云)at the Department of Atmospheric and Oceanic Sciences,School of Physics,Peking University,and their collaborators recently published a paper in Nature Geoscience(http://www.na...Profs.Yang Jun(杨军)and Hu Yongyun(胡永云)at the Department of Atmospheric and Oceanic Sciences,School of Physics,Peking University,and their collaborators recently published a paper in Nature Geoscience(http://www.nature.com/ngeo/journal/v10/n8/pdf/ngeo2994.pdf).They show展开更多
Along with its familiar impact craters,the surface of the Moon sports numerous pale whorls and streaks known as lunar swirls[1].Likened to the pattern produced when someone pours cream into a cup of black coffee[2],th...Along with its familiar impact craters,the surface of the Moon sports numerous pale whorls and streaks known as lunar swirls[1].Likened to the pattern produced when someone pours cream into a cup of black coffee[2],the swirls can extend for more than 50 km and have puzzled researchers for centuries[3].Adding to their mystery,the features are associated with regions of magnetized rocks,an unusual attribute because the Moon lacks a magnetic field[3].Researchers do not know how the swirls are related to the magnetic fields or how they formed.展开更多
On February 6, 2023, a series of severe earthquakes occurred in eastern Turkey and neighboring areas of Syria. It was the largest earthquake in the world in more than a year, and the largest earthquake in the history ...On February 6, 2023, a series of severe earthquakes occurred in eastern Turkey and neighboring areas of Syria. It was the largest earthquake in the world in more than a year, and the largest earthquake in the history of Turkey. Living under the fear of earthquakes, the people in Turkey and other earthquake zones have hoped again and again to change their fate, but they have to resign themselves to fate. Thus, the author analyzed the causes of large earthquakes such as Turkey earthquake, and found that some of the world’s potential seismic zones have been eroded by sea water or river water for a long time to create a series of surface faults. When the moon gets close to these faults, it will have a huge gravitational pull on them, and even cause the fault to move, resulting in strong earthquakes. Especially in some seismic zones, earthquakes are occurring more and more frequently and their intensity is getting bigger and bigger. The main reason is that the opening of the Arctic shipping route and the exploration and exploitation of oil and gas have caused the melting of the Arctic ice sheet and the loss of glaciers, which has led to the weakening of the Arctic vortex and the reduction of the compression ability of the polar vortices to the clouds, thus slowing down the rotation of the Earth and thus the revolution of the moon. So the moon gradually moves in a spiral toward the Earth;as the moon orbit close to the Earth, the moon’s gravity on the surface faults will gradually strengthen, so it is easy to cause the surface fault dislocations, resulting in frequent earthquakes or strong earthquakes. So the author puts forward some measures to prevent frequent and strong earthquakes.展开更多
From September 22 to October 6,the global unified brand activities,"2023 Mid-Autumn Festival:A Moonmoment to Remember"was held,creating a festive atmosphere across the world through performances,exhibitions,...From September 22 to October 6,the global unified brand activities,"2023 Mid-Autumn Festival:A Moonmoment to Remember"was held,creating a festive atmosphere across the world through performances,exhibitions,temple fairs,competitions,interactive experiences,cultural salons and other activities,enhance the engagement and experience of local citizens,and letting people from all over the world share the happy and peaceful atmosphere of the Mid-Autumn Festival with Chinese people.展开更多
The paper gives a brief review of the upcoming Russian moon and Venus robotic exploration missions,including objectives and cooperation opportunities.It also introduces the joint Russia-China International Lunar Resea...The paper gives a brief review of the upcoming Russian moon and Venus robotic exploration missions,including objectives and cooperation opportunities.It also introduces the joint Russia-China International Lunar Research Station(ILRS)program from perspective of cooperation in space science.展开更多
基金supported by SNSF grant IZKOZ-2_154380partly supported by SNF 200021_149252
文摘To better understand Earth's present tectonic style-plate tectonics—and how it may have evolved from single plate(stagnant lid) tectonics, it is instructive to consider how common it is among similar bodies in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment(plate) motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes;any other tectonic style is usefully called "stagnant lid" or "fragmented lid". In 2015 humanity completed a 50+ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects,which we informally call "planetoids" and use especially images of these bodies to infer their tectonic activity. The four largest planetoids are enveloped in gas and ice(Jupiter, Saturn, Uranus, and Neptune)and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range widely in density, from 1000 to 5500 kg/m^3. A gap separates 8 silicate planetoids with ρ = 3000 kg/m^3 or greater from 20 icy planetoids(including the gaseous and icy giant planets) with ρ = 2200 kg/m^3 or less. We define the "Tectonic Activity Index"(TAI), scoring each body from 0 to 3 based on evidence for recent volcanism, deformation, and resurfacing(inferred from impact crater density). Nine planetoids with TAI = 2 or greater are interpreted to be tectonically and convectively active whereas 17 with TAI <2 are inferred to be tectonically dead. We further infer that active planetoids have lithospheres or icy shells overlying asthenosphere or water/weak ice. TAI of silicate(rocky) planetoids positively correlates with their inferred Rayleigh number. We conclude that some type of stagnant lid tectonics is the dominant mode of heat loss and that plate tectonics is unusual. To make progress understanding Earth's tectonic history and the tectonic style of active exoplanets, we need to better understand the range and controls of active stagnant lid tectonics.
基金This research was partially funded by CNES under the research contract Ref.R-S20/BS-0005-069.
文摘Understanding the internal composition of a celestial body is fundamental for formulating theories regarding its origin.Deep knowledge of the distribution of mass under the body’s crust can be achieved by analyzing its moments of inertia and gravity field.In this regard,the two moons of the Martian system have not yet been closely studied and continue to pose questions regarding their origin to the space community;thus,they deserve further characterization.The Martian Moons eXploration mission will be the first of its kind to sample and study Phobos over a prolonged period.This study aims to demonstrate that the adoption of periodic and quasi-periodic retrograde trajectories would be beneficial for the scientific value of the mission.Here,a covariance analysis was implemented to compare the estimation of high-order gravitational field coefficients from different orbital geometries and for different sets of processed observables.It was shown that the adoption of low-altitude non-planar quasi-satellite orbits would help to refine the knowledge of the moon’s libration angle and gravitational field.
基金EP-A and JMT-R acknowledges financial support from the project PID2021-128062NB-I00 funded by MCIN/AEI/10.13039/501100011033The lunar samples studied here were acquired in the framework of grant PGC2018-097374-B-I00(P.I.JMT-R)+3 种基金This project has received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(No.865657)for the project“Quantum Chemistry on Interstellar Grains”(QUANTUMGRAIN),AR acknowledges financial support from the FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación(No.PID2021-126427NB-I00)Partial financial support from the Spanish Government(No.PID2020-116844RB-C21)the Generalitat de Catalunya(No.2021-SGR-00651)is acknowledgedThis work was supported by the LUMIO project funded by the Agenzia Spaziale Italiana(No.2024-6-HH.0).
文摘Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research.
基金supported by National Natural Science Foundation of China (Grant No. 40328006)
文摘Galileo mission detected the magnetic anomalies originated from Galilean moons.These anomalies are likely generated in the moons' interiors,under the influence of a strong ambient Jovian field.Among various possible generation mechanisms of the anomalies,we focus on magneto-convection and dynamos in the interiors via numerical simulation.To mimic the electromagnetic environment of the moons,we introduce in our numerical model an external uniform magnetic field B0 with a fixed orientation but varying field strength.Our results show that a finite B0 can substantially alter the dynamo processes inside the core.When the ambient field strength B0 increases to approximately 40% of the field generated by the pure dynamo action,the convective state in the core changes significantly:the convective flow decreases by 80% in magnitude,but the differential rotation becomes stronger in much of the fluid layer,leading to a stronger field generated in the core.The field morphologies inside the core tend to align with the ambient field,while the flow patterns show the symmetry-breaking effect under the influence of B0.Furthermore,the generated field tends to be temporally more stable.
基金supported by the National Key Research and Development Program of China(2021YFA0715101)partly supported by a National LLR station project+2 种基金the National Natural Science Foundation of China(NSFC,Grant Nos.11973064 and 42101413)Jilin Province Mid-youth science and technology innovation and entrepreneurship outstanding talent project(20220508147RC)the Changchun City and Chinese Academy of Sciences Science and Technology Cooperation High-tech Industrialization Special Fund Project(21SH05)。
文摘Lunar optical polarization is a fascinating phenomenon that occurs when sunlight reflects off the surface of the Moon and becomes polarized.This study employs a novel split-focus plane polarimetric camera to conduct the initial white light polarimetric observations on the near side of the Moon.We obtained the linear degree of polarization(DOP)parameters of white light by observation from the eastern and western hemispheres of the Moon.The findings indicate that the white light polarization is lower in the lunar highland than in the lunar maria overall.Combining the analysis of lunar soil samples,we noticed and determined that the DOP parameters of white light demonstrate high consistency with iron oxide on the Moon.This study may serve as a new diagnostic tool for the Moon.
基金supported by the National Natural Science Foundation of China (12233005, 12073078 and 12173088)the science research grants from the China Manned Space Project with NO. CMS-CSST-2021-A02, CMS-CSST-2021-A04 and CMS-CSST-2021-A07grants from the Cyrus Chun Ying Tang Foundations。
文摘Aiming at improving the survey efficiency of the Wide Field Survey Telescope, we have developed a basic scheduling strategy that takes into account the telescope characteristics, observing conditions, and weather conditions at the Lenghu site. The sky area is divided into rectangular regions, referred to as “tiles,” with a size of2°. 577 × 2°. 634 slightly smaller than the focal area of the mosaic CCDs. These tiles are continuously filled in annulars parallel to the equator. The brightness of the sky background, which varies with the moon phase and distance from the moon, plays a significant role in determining the accessible survey fields. Approximately 50connected tiles are grouped into one block for observation. To optimize the survey schedule, we perform simulations by taking into account the length of exposures, data readout, telescope slewing, and all relevant observing conditions. We utilize the Greedy Algorithm for scheduling optimization. Additionally, we propose a dedicated dithering pattern to cover the gaps between CCDs and the four corners of the mosaic CCD array, which are located outside of the 3° field of view. This dithering pattern helps to achieve relatively uniform exposure maps for the final survey outputs.
文摘The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.
文摘Every year on 22 April, we have celebrated Earth Day and the beautiful planet we call home. Earth Day, established in 1970, has been used to highlight our planet’s environmental challenges and raise awareness of the importance of protecting our world for future generations [1]. To provide the protection of our planet, we should explain Earth’s environmental challenges to the best of our knowledge in frames of contemporary Geophysics. This paper gives a short overview of the developed Hypersphere World-Universe Model (WUM) and pay particular attention to the principal role of Dark Matter (DM) in the Earth’s life. In this manuscript, we discuss different aspects of the Earth: a condition of Young Earth before the Beginning of life on It;Internal Structure;“The 660-km Boundary” that we named Geomagma;Random Variations of Earth’s Rotational Speed on a daily basis;Origin of Moon;Expanding Earth;Internal Heating;Faint Young Sun paradox;Geocorona and Planetary Coronas;High-Energy Atmospheric Physics. WUM proposed principally different ways to solve the problems of Internal Heating, Origin of the Moon, and Faint Young Sun paradox based on DM core of the Earth. The Model revealed the fact that the Sun Activity causes the Geomagma Activity and, as a consequence, Random Variations of Earth’s Rotational Speed by the varying Sun’s magnetic field.
文摘Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. According to Kepler’s 1st Law, “orbit of a planet with respect to the Sun is an ellipse, with the Sun at one of the two foci.” Orbit of the Moon with respect to Earth is also distinctly elliptical, but this ellipse has a varying eccentricity as the Moon comes closer to and goes farther away from the Earth in a harmonic style along a full cycle of this ellipse. In this paper, our research results are summarized, where it is first mathematically shown that the “distance between points around any two different circles in three-dimensional space” is equivalent to the “distance of points around a vector ellipse to another fixed or moving point, as in two-dimensional space”. What is done is equivalent to showing that bodies moving on two different circular orbits in space vector-wise behave as if moving on an elliptical path with respect to each other, and virtually seeing each other as positioned at an instantaneously stationary point in space on their relative ecliptic plane, whether they are moving with the same angular velocity, or different but fixed angular velocities, or even with different and changing angular velocities with respect to their own centers of revolution. This mathematical revelation has the potential to lead to far reaching discoveries in physics, enabling more insight into forces of nature, with a formulation of a new fundamental model regarding the motions of bodies in the Universe, including the Sun, Planets, and Satellites in the Solar System and elsewhere, as well as at particle and subatomic level. Based on the demonstrated mathematical analysis, as they exhibit almost fixed elliptic orbits relative to one another over time, the assertion is made that the Sun, the Earth, and the Moon must each be revolving in their individual circular orbits of revolution in space. With this expectation, individual orbital parameters of the Sun, the Earth, and the Moon are calculated based on observed Earth to Sun and Earth to Moon distance data, also using analytical methods developed as part of this research to an approximation. This calculation and analysis process have revealed additional results aligned with observation, and this also supports our assertion that the Sun, the Earth, and the Moon must actually be revolving in individual circular orbits.
文摘Mooncake gambling is a valuable Chinese tradition with its origins in the Ming Dynasty,reportedly planned by the legendary explorer Zheng He.Initially crafted to entertain sailors during their extended sea voyages,the game also aimed to ease the homesickness experienced by Zheng He’s troops.Over time,this pastime has transformed into a beloved custom in the Mid-Autumn Festival.
文摘《You Raise Me Up》是一首来自于Secret Garden神秘园的著名歌曲,收录于他们2002年发行的专辑《Once In A Red Moon》中。Secret Garden神秘园组合是由爱尔兰女小提琴手Fionnuala Sherry菲奥诺拉·莎莉和挪威作曲家兼键盘手Rolf Lovland罗尔夫·劳弗兰组建的著名新世纪音乐风格乐队。
文摘Profs.Yang Jun(杨军)and Hu Yongyun(胡永云)at the Department of Atmospheric and Oceanic Sciences,School of Physics,Peking University,and their collaborators recently published a paper in Nature Geoscience(http://www.nature.com/ngeo/journal/v10/n8/pdf/ngeo2994.pdf).They show
文摘Along with its familiar impact craters,the surface of the Moon sports numerous pale whorls and streaks known as lunar swirls[1].Likened to the pattern produced when someone pours cream into a cup of black coffee[2],the swirls can extend for more than 50 km and have puzzled researchers for centuries[3].Adding to their mystery,the features are associated with regions of magnetized rocks,an unusual attribute because the Moon lacks a magnetic field[3].Researchers do not know how the swirls are related to the magnetic fields or how they formed.
文摘On February 6, 2023, a series of severe earthquakes occurred in eastern Turkey and neighboring areas of Syria. It was the largest earthquake in the world in more than a year, and the largest earthquake in the history of Turkey. Living under the fear of earthquakes, the people in Turkey and other earthquake zones have hoped again and again to change their fate, but they have to resign themselves to fate. Thus, the author analyzed the causes of large earthquakes such as Turkey earthquake, and found that some of the world’s potential seismic zones have been eroded by sea water or river water for a long time to create a series of surface faults. When the moon gets close to these faults, it will have a huge gravitational pull on them, and even cause the fault to move, resulting in strong earthquakes. Especially in some seismic zones, earthquakes are occurring more and more frequently and their intensity is getting bigger and bigger. The main reason is that the opening of the Arctic shipping route and the exploration and exploitation of oil and gas have caused the melting of the Arctic ice sheet and the loss of glaciers, which has led to the weakening of the Arctic vortex and the reduction of the compression ability of the polar vortices to the clouds, thus slowing down the rotation of the Earth and thus the revolution of the moon. So the moon gradually moves in a spiral toward the Earth;as the moon orbit close to the Earth, the moon’s gravity on the surface faults will gradually strengthen, so it is easy to cause the surface fault dislocations, resulting in frequent earthquakes or strong earthquakes. So the author puts forward some measures to prevent frequent and strong earthquakes.
文摘From September 22 to October 6,the global unified brand activities,"2023 Mid-Autumn Festival:A Moonmoment to Remember"was held,creating a festive atmosphere across the world through performances,exhibitions,temple fairs,competitions,interactive experiences,cultural salons and other activities,enhance the engagement and experience of local citizens,and letting people from all over the world share the happy and peaceful atmosphere of the Mid-Autumn Festival with Chinese people.
文摘The paper gives a brief review of the upcoming Russian moon and Venus robotic exploration missions,including objectives and cooperation opportunities.It also introduces the joint Russia-China International Lunar Research Station(ILRS)program from perspective of cooperation in space science.