A multiparty simultaneous quantum identity authentication protocol based on Creenberger-Horne-Zeilinger (GHZ) states is proposed. The multi-user can be authenticated by a trusted third party (TTP) simultaneously. ...A multiparty simultaneous quantum identity authentication protocol based on Creenberger-Horne-Zeilinger (GHZ) states is proposed. The multi-user can be authenticated by a trusted third party (TTP) simultaneously. Compared with the scheme proposed recently (Wang et al 2006 Chin. Phys. Lett. 23(9) 2360), the proposed scheme has the advantages of consuming fewer quantum and classical resources and lessening the difficulty and intensity of necessary operations.展开更多
We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-pho...We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.展开更多
We propose a scheme for multiparty-controlled remote preparation of the two-particle state by using two non-maximally Greenberger-Horne-Zeilinger states as quantum channel. Our scheme consists of one sender and n remo...We propose a scheme for multiparty-controlled remote preparation of the two-particle state by using two non-maximally Greenberger-Horne-Zeilinger states as quantum channel. Our scheme consists of one sender and n remote receivers. It will be shown that the sender can help either one of the n receivers to remotely preparation the original state with the appropriate probability, and the sender Alice's two-particle projective measurement and the controllers' single-particle product meazurements are needed. We also obtained the probability of the successful remote state preparation.展开更多
We propose a new multiparty quantum secret sharing protocol via introducing auxiliary particles using a non-maximally entangled (pure) two-particle state without a Bell measurement. The communication parties utilize...We propose a new multiparty quantum secret sharing protocol via introducing auxiliary particles using a non-maximally entangled (pure) two-particle state without a Bell measurement. The communication parties utilize decoy particles tO check eavesdropping. After ensuring the security of the quantum channel, the sender encodes the secret message and transmits it to the receiver by using controlled-NOT operation and von Neumann measurement. If and only if all the agents agree to collaborate, they can read out the secret message.展开更多
This paper aims to find a practical way of quantitatively representing the privacy of network data. A method of quantifying the privacy of network data anonymization based on similarity distance and entropy in the sce...This paper aims to find a practical way of quantitatively representing the privacy of network data. A method of quantifying the privacy of network data anonymization based on similarity distance and entropy in the scenario involving multiparty network data sharing with Trusted Third Party (TTP) is proposed. Simulations are then conducted using network data from different sources, and show that the measurement indicators defined in this paper can adequately quantify the privacy of the network. In particular, it can indicate the effect of the auxiliary information of the adversary on privacy.展开更多
In this paper, we focus on Elliptic Curve Cryptography based approach for Secure Multiparty Computation (SMC) problem. Widespread proliferation of data and the growth of communication technologies have enabled collabo...In this paper, we focus on Elliptic Curve Cryptography based approach for Secure Multiparty Computation (SMC) problem. Widespread proliferation of data and the growth of communication technologies have enabled collaborative computations among parties in distributed scenario. Preserving privacy of data owned by parties is crucial in such scenarios. Classical approach to SMC is to perform computation using Trusted Third Party (TTP). However, in practical scenario, TTPs are hard to achieve and it is imperative to eliminate TTP in SMC. In addition, existing solutions proposed for SMC use classical homomorphic encryption schemes such as RSA and Paillier. Due to the higher cost incurred by such cryptosystems, the resultant SMC protocols are not scalable. We propose Elliptic Curve Cryptography (ECC) based approach for SMC that is scalable in terms of computational and communication cost and avoids TTP. In literature, there do exist various ECC based homomorphic schemes and it is imperative to investigate and analyze these schemes in order to select the suitable for a given application. In this paper, we empirically analyze various ECC based homomorphic encryption schemes based on performance metrics such as computational cost and communication cost. We recommend an efficient algorithm amongst several selected ones, that offers security with lesser overheads and can be applied in any application demanding privacy.展开更多
An efficient multipaxty quantum secret sharing scheme is proposed, in which the secret is a quantum state, and the dealer encodes the secret by performing the operations of quantum-controlled-not and Hadamard gate. Th...An efficient multipaxty quantum secret sharing scheme is proposed, in which the secret is a quantum state, and the dealer encodes the secret by performing the operations of quantum-controlled-not and Hadamard gate. The participants perform the single-particle measurements on their particles, and then can cooperate to recover the original quantum state. In our scheme, both the dealer and the participants do not need to perform the entanglement measurement. Compared with the existing schemes, our scheme is simpler and more efficient.展开更多
The significant advantage of the quantum homomorphic encryption scheme is to ensure the perfect security of quantum private data.In this paper,a novel secure multiparty quantum homomorphic encryption scheme is propose...The significant advantage of the quantum homomorphic encryption scheme is to ensure the perfect security of quantum private data.In this paper,a novel secure multiparty quantum homomorphic encryption scheme is proposed,which can complete arbitrary quantum computation on the private data of multiple clients without decryption by an almost dishonest server.Firstly,each client obtains a secure encryption key through the measurement device independent quantum key distribution protocol and encrypts the private data by using the encryption operator and key.Secondly,with the help of the almost dishonest server,the non-maximally entangled states are preshared between the client and the server to correct errors in the homomorphic evaluation of T gates,so as to realize universal quantum circuit evaluation on encrypted data.Thirdly,from the perspective of the application scenario of secure multi-party computation,this work is based on the probabilistic quantum homomorphic encryption scheme,allowing multiple parties to delegate the server to perform the secure homomorphic evaluation.The operation and the permission to access the data performed by the client and the server are clearly pointed out.Finally,a concrete security analysis shows that the proposed multiparty quantum homomorphic encryption scheme can securely resist outside and inside attacks.展开更多
On March 4, President Xi Jinping, also General Secretary of the Communist Party of China (CPC) Central Committee, attended a joint panel discussion with political advisors from the China Democratic League and the ...On March 4, President Xi Jinping, also General Secretary of the Communist Party of China (CPC) Central Committee, attended a joint panel discussion with political advisors from the China Democratic League and the China Zhi Gong Party, those without party affiliation and those from the sector of returned over seas Chinese.展开更多
Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodo...Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodologies to address these challenges. Through a series of experiments, we evaluate the performance, security, and efficiency of the proposed algorithms in real-world cloud environments. Our results demonstrate the effectiveness of homomorphic encryption-based secure computation, secure multiparty computation, and trusted execution environment-based approaches in mitigating security threats while ensuring efficient resource utilization. Specifically, our homomorphic encryption-based algorithm exhibits encryption times ranging from 20 to 1000 milliseconds and decryption times ranging from 25 to 1250 milliseconds for payload sizes varying from 100 KB to 5000 KB. Furthermore, our comparative analysis against state-of-the-art solutions reveals the strengths of our proposed algorithms in terms of security guarantees, encryption overhead, and communication latency.展开更多
We proposed a novel and efficient multiparty quantum secret sharing scheme using entangled state which in that the number of parties can be arbitrary large.The state which we used,has special properties that make our ...We proposed a novel and efficient multiparty quantum secret sharing scheme using entangled state which in that the number of parties can be arbitrary large.The state which we used,has special properties that make our scheme simple and safe.The operations which are needed to recover secret message,are only exclusive-or addition and complement operation.Moreover it is shown that this scheme is secure against eavesdropping.Also this scheme provides the best quantum bit efficiency compared with some famous quantum secret sharing schemes.展开更多
The key agreement protocols allow two or more users to negotiate a shared key for establishing a secure communication channel without a third trusted party in such a way that the shared key is determined by all author...The key agreement protocols allow two or more users to negotiate a shared key for establishing a secure communication channel without a third trusted party in such a way that the shared key is determined by all authorized players rather than any subset of them.We propose the first real multiparty semiquantum key agreement(SQKA)protocols based on single-photons.Our protocols include only one quantum player,while the others are classical players who only need to measure and prepare states in the classical basis.We first present a symmetric three-party SQKA protocol,where two classical players can fairly negotiate a key with a quantum player by using single-photons as message carriers.Then we present an asymmetric SQKA protocol where a relatively low percentage of quantum states are used for eavesdropping detection.And we further extend them to an asymmetric multiparty SQKA protocol.Our SQKA protocols require fewer quantum resources than the previous SQKA protocols for classical players,especially without requirement of entanglement,which makes them easier to implement using current technologies.Our protocols are secure against external eavesdroppers and are fair against a minority of internal dishonest players.展开更多
Multiparty quantum communication is an important branch of quantum networks.It enables private information transmission with information-theoretic security among legitimate parties.We propose a sender-controlled measu...Multiparty quantum communication is an important branch of quantum networks.It enables private information transmission with information-theoretic security among legitimate parties.We propose a sender-controlled measurement-device-independent multiparty quantum communication protocol.The sender Alice divides a private message into several parts and delivers them to different receivers for secret sharing with imperfect measurement devices and untrusted ancillary nodes.Furthermore,Alice acts as an active controller and checks the security of quantum channels and the reliability of each receiver before she encodes her private message for secret sharing,which makes the protocol convenient for multiparity quantum communication.展开更多
The need to simultaneously balance security and fairness in quantum key agreement(QKA) makes it challenging to design a flawless QKA protocol, especially a multiparty quantum key agreement(MQKA) protocol. When designi...The need to simultaneously balance security and fairness in quantum key agreement(QKA) makes it challenging to design a flawless QKA protocol, especially a multiparty quantum key agreement(MQKA) protocol. When designing an MQKA protocol,two modes can be used to transmit the quantum information carriers: travelling mode and distributed mode. MQKA protocols usually have a higher qubit efficiency in travelling mode than in distributed mode. Thus, several travelling mode MQKA protocols have been proposed. However, almost all of these are vulnerable to collusion attacks from internal betrayers. This paper proposes an improved MQKA protocol that operates in travelling mode with Einstein-Podolsky-Rosen pairs. More importantly, we present a new travelling mode MQKA protocol that uses single photons, which is more feasible than previous methods under current technologies.展开更多
Differential privacy(DP)is widely employed for the private data release in the single-party scenario.Data utility could be degraded with noise generated by ubiquitous data correlation,and it is often addressed by sens...Differential privacy(DP)is widely employed for the private data release in the single-party scenario.Data utility could be degraded with noise generated by ubiquitous data correlation,and it is often addressed by sensitivity reduction with correlation analysis.However,increasing multiparty data release applications present new challenges for existing methods.In this paper,we propose a novel correlated differential privacy of the multiparty data release(MP-CRDP).It effectively reduces the merged dataset's dimensionality and correlated sensitivity in two steps to optimize the utility.We also propose a multiparty correlation analysis technique.Based on the prior knowledge of multiparty data,a more reasonable and rigorous standard is designed to measure the correlated degree,reducing correlated sensitivity,and thus improve the data utility.Moreover,by adding noise to the weights of machine learning algorithms and query noise to the release data,MP-CRDP provides the release technology for both low-noise private data and private machine learning algorithms.Comprehensive experiments demonstrate the effectiveness and practicability of the proposed method on the utilized Adult and Breast Cancer datasets.展开更多
Recently, Gao et al.'s [Commun. Theor. Phys. 52 (2009) 421] multiparty quantum secret sharing (MQSS) protocol with two-photon three-dimensional Bell states was enhanced by Hwang et al. [Commun. Theor. Phys. 56 (20...Recently, Gao et al.'s [Commun. Theor. Phys. 52 (2009) 421] multiparty quantum secret sharing (MQSS) protocol with two-photon three-dimensional Bell states was enhanced by Hwang et al. [Commun. Theor. Phys. 56 (2011) 79]. The improved protocol removes some unnecessary unitary operations, devices, and transmissions by the technique of decoy single photons and careful modification. However, in this paper, we investigate the security of the improved protocol and find it is insecure. The eavesdropper can steal all Alice's secret information. Furthermore, a feasible modification to remedy the security loophole is put forward. Our improved protocol provides a basic method to modify a kind of MQSS protocols which cannot resist the collusion attack.展开更多
The deficiencies of the first threshold Guilbu-Quisquater signature schemepresented by Li-San Liu, Cheng-Kang Chu and Wen-Guey Tzeng arc analysiscd at first, and then a newthreshold Guillou-Quisquater signature scheme...The deficiencies of the first threshold Guilbu-Quisquater signature schemepresented by Li-San Liu, Cheng-Kang Chu and Wen-Guey Tzeng arc analysiscd at first, and then a newthreshold Guillou-Quisquater signature scheme is presented. The new scheme isunforgeable and robustagainst any adaptive adversary if the base Guillou-Quisquater signature scheme is unforgeable underthe chosen message attack and computing the discrete logarithm modulo a prime is hard This schemecan also achieve optimal resilience. However, the new scheme does not need the assumption that N isthe product of two safe primes. The basie signature scheme underlying the new scheme is exactlyGuillou-Quisqualtr signature scheme, and the additional strong computation assumption introduced bythe first threshold Guillou-Quisquater scheme is weaken.展开更多
Numerous privacy-preserving issues have emerged along with the fast development of Internet, both in theory and in real-life applications. To settle the privacy-preserving problems, secure multi-party computation is e...Numerous privacy-preserving issues have emerged along with the fast development of Internet, both in theory and in real-life applications. To settle the privacy-preserving problems, secure multi-party computation is essential and critical. In this paper, we have solved two problems regarding to how to determine the position relation between points and curves without revealing any private information. Two protocols have been proposed in order to solve the problems in different conditions. In addition, some building blocks have been developed, such as scalar product protocol, so that we can take advantage of them to settle the privacy-preserving computational geometry problems which are a kind of special secure multi-party computation problems. Moreover, oblivious transfer and power series expansion serve as significant parts in our protocols. Analyses and proofs have also been given to argue our conclusion.展开更多
Despite that existing data sharing systems in online social networks (OSNs) propose to encrypt data before sharing, the multiparty access control of encrypted data has become a challenging issue. In this paper, we p...Despite that existing data sharing systems in online social networks (OSNs) propose to encrypt data before sharing, the multiparty access control of encrypted data has become a challenging issue. In this paper, we propose a secure data sharing scheme in 0SNs based on ciphertext-policy attribute- based proxy re-encryption and secret sharing. In order to protect users' sensitive data, our scheme allows users to customize access policies of their data and then outsource encrypted data to the OSNs service provider. Our scheme presents a multiparty access control model, which enables the disseminator to update the access policy of ciphertext if their attributes satisfy the existing access policy. Further, we present a partial decryption construction in which the computation overhead of user is largely reduced by delegating most of the decryption operations to the OSNs service provider. We also provide checkability on the results returned from the OSNs service provider to guarantee the correctness of partial decrypted ciphertext. Moreover, our scheme presents an efficient attribute revocation method that achieves both forward and backward secrecy. The security and performance analysis results indicate that the proposed scheme is secure and efficient in OSNs.展开更多
Grand-multiparity is a serious risk factor in pregnancy and common in developing countries. The objective was to compare the obstetric outcome of grand-multiparous women with that of low parity in our center. The stud...Grand-multiparity is a serious risk factor in pregnancy and common in developing countries. The objective was to compare the obstetric outcome of grand-multiparous women with that of low parity in our center. The study comprised of 150 grand-multiparous women (cases) and 150 multiparous women (para 2 - 4) in this index pregnancy as controls matched for age and admitted for delivery. The mean age of the grand-multiparous women at delivery was 37.0 ± 2.8 years. Grand-multiparity was significantly higher among women with only primary education (48.0% versus 44.7%), polygamous marriages (9.3% versus 3.3%) and Muslims (17.3% versus 6.7%). Pregnancy induced hypertension and primary postpartum hemorrhage were significantly more often seen among grand-multiparous women than among the controls. The mean packed cell volume before delivery in the grand-multiparous women was significantly lower (33.6% ± 2.7%) than in the multiparous group (35.2% ± 2.7%) (P-value = 0.000). Grand-multiparity with its associated complications still occurs frequently in our environment. However, with adequate antenatal surveillance, optimal care during labour and contraceptive use, these problems will be reduced.展开更多
基金supported by the National High-Tech Research,Development Plan of China (Grant Nos 2006AA01Z440,2009AA012441 and 2009AA012437)National Basic Research Program of China (973 Program) (Grant No 2007CB311100)+5 种基金the National Natural Science Foundation of China (Grant Nos 60873191 and 60821001)the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No KM200810005004)Beijing Natural Science Foundation (Grant No 1093015)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast Universitythe ISN Open FoundationScience and Technology Program of Beijing (Grant No Z07000100720706)
文摘A multiparty simultaneous quantum identity authentication protocol based on Creenberger-Horne-Zeilinger (GHZ) states is proposed. The multi-user can be authenticated by a trusted third party (TTP) simultaneously. Compared with the scheme proposed recently (Wang et al 2006 Chin. Phys. Lett. 23(9) 2360), the proposed scheme has the advantages of consuming fewer quantum and classical resources and lessening the difficulty and intensity of necessary operations.
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the General Fund of the Educational Committee of Anhui Province under Grant No. 2006KJ260B, and the Key Fund of the Ministry of Education of China under Grant No. 206063. We are very grateful to Prof. ZHANG Zhan-Jun for his detailed instructions and help.
文摘We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.
文摘We propose a scheme for multiparty-controlled remote preparation of the two-particle state by using two non-maximally Greenberger-Horne-Zeilinger states as quantum channel. Our scheme consists of one sender and n remote receivers. It will be shown that the sender can help either one of the n receivers to remotely preparation the original state with the appropriate probability, and the sender Alice's two-particle projective measurement and the controllers' single-particle product meazurements are needed. We also obtained the probability of the successful remote state preparation.
基金National Natural Science Foundation of China under Grant No.10575017
文摘We propose a new multiparty quantum secret sharing protocol via introducing auxiliary particles using a non-maximally entangled (pure) two-particle state without a Bell measurement. The communication parties utilize decoy particles tO check eavesdropping. After ensuring the security of the quantum channel, the sender encodes the secret message and transmits it to the receiver by using controlled-NOT operation and von Neumann measurement. If and only if all the agents agree to collaborate, they can read out the secret message.
基金supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2009CB320505the Fundamental Research Funds for the Central Universities under Grant No. 2011RC0508+2 种基金the National Natural Science Foundation of China under Grant No. 61003282China Next Generation Internet Project "Research and Trial on Evolving Next Generation Network Intelligence Capability Enhancement"the National Science and Technology Major Project "Research about Architecture of Mobile Internet" under Grant No. 2011ZX03002-001-01
文摘This paper aims to find a practical way of quantitatively representing the privacy of network data. A method of quantifying the privacy of network data anonymization based on similarity distance and entropy in the scenario involving multiparty network data sharing with Trusted Third Party (TTP) is proposed. Simulations are then conducted using network data from different sources, and show that the measurement indicators defined in this paper can adequately quantify the privacy of the network. In particular, it can indicate the effect of the auxiliary information of the adversary on privacy.
文摘In this paper, we focus on Elliptic Curve Cryptography based approach for Secure Multiparty Computation (SMC) problem. Widespread proliferation of data and the growth of communication technologies have enabled collaborative computations among parties in distributed scenario. Preserving privacy of data owned by parties is crucial in such scenarios. Classical approach to SMC is to perform computation using Trusted Third Party (TTP). However, in practical scenario, TTPs are hard to achieve and it is imperative to eliminate TTP in SMC. In addition, existing solutions proposed for SMC use classical homomorphic encryption schemes such as RSA and Paillier. Due to the higher cost incurred by such cryptosystems, the resultant SMC protocols are not scalable. We propose Elliptic Curve Cryptography (ECC) based approach for SMC that is scalable in terms of computational and communication cost and avoids TTP. In literature, there do exist various ECC based homomorphic schemes and it is imperative to investigate and analyze these schemes in order to select the suitable for a given application. In this paper, we empirically analyze various ECC based homomorphic encryption schemes based on performance metrics such as computational cost and communication cost. We recommend an efficient algorithm amongst several selected ones, that offers security with lesser overheads and can be applied in any application demanding privacy.
文摘An efficient multipaxty quantum secret sharing scheme is proposed, in which the secret is a quantum state, and the dealer encodes the secret by performing the operations of quantum-controlled-not and Hadamard gate. The participants perform the single-particle measurements on their particles, and then can cooperate to recover the original quantum state. In our scheme, both the dealer and the participants do not need to perform the entanglement measurement. Compared with the existing schemes, our scheme is simpler and more efficient.
基金This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province(Grant No.SKLACSS-202101)NSFC(Grant Nos.62176273,61962009)+3 种基金the Foundation of Guizhou Provincial Key Laboratory of Public Big Data(No.2019BDKFJJ010,2019BDKFJJ014)the Fundamental Re-search Funds for Beijing Municipal Commission of Education,Beijing Urban Governance Re-search Base of North China University of Technology,the Natural Science Foundation of Inner Mongolia(2021MS06006)Baotou Kundulun District Science and technology plan project(YF2020013)Inner Mongolia discipline inspection and supervision big data laboratory open project fund(IMDBD2020020).
文摘The significant advantage of the quantum homomorphic encryption scheme is to ensure the perfect security of quantum private data.In this paper,a novel secure multiparty quantum homomorphic encryption scheme is proposed,which can complete arbitrary quantum computation on the private data of multiple clients without decryption by an almost dishonest server.Firstly,each client obtains a secure encryption key through the measurement device independent quantum key distribution protocol and encrypts the private data by using the encryption operator and key.Secondly,with the help of the almost dishonest server,the non-maximally entangled states are preshared between the client and the server to correct errors in the homomorphic evaluation of T gates,so as to realize universal quantum circuit evaluation on encrypted data.Thirdly,from the perspective of the application scenario of secure multi-party computation,this work is based on the probabilistic quantum homomorphic encryption scheme,allowing multiple parties to delegate the server to perform the secure homomorphic evaluation.The operation and the permission to access the data performed by the client and the server are clearly pointed out.Finally,a concrete security analysis shows that the proposed multiparty quantum homomorphic encryption scheme can securely resist outside and inside attacks.
文摘On March 4, President Xi Jinping, also General Secretary of the Communist Party of China (CPC) Central Committee, attended a joint panel discussion with political advisors from the China Democratic League and the China Zhi Gong Party, those without party affiliation and those from the sector of returned over seas Chinese.
文摘Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodologies to address these challenges. Through a series of experiments, we evaluate the performance, security, and efficiency of the proposed algorithms in real-world cloud environments. Our results demonstrate the effectiveness of homomorphic encryption-based secure computation, secure multiparty computation, and trusted execution environment-based approaches in mitigating security threats while ensuring efficient resource utilization. Specifically, our homomorphic encryption-based algorithm exhibits encryption times ranging from 20 to 1000 milliseconds and decryption times ranging from 25 to 1250 milliseconds for payload sizes varying from 100 KB to 5000 KB. Furthermore, our comparative analysis against state-of-the-art solutions reveals the strengths of our proposed algorithms in terms of security guarantees, encryption overhead, and communication latency.
文摘We proposed a novel and efficient multiparty quantum secret sharing scheme using entangled state which in that the number of parties can be arbitrary large.The state which we used,has special properties that make our scheme simple and safe.The operations which are needed to recover secret message,are only exclusive-or addition and complement operation.Moreover it is shown that this scheme is secure against eavesdropping.Also this scheme provides the best quantum bit efficiency compared with some famous quantum secret sharing schemes.
基金supported by the National Natural Science Foundation of China(Grant No.61601358)the Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2019JM-291)。
文摘The key agreement protocols allow two or more users to negotiate a shared key for establishing a secure communication channel without a third trusted party in such a way that the shared key is determined by all authorized players rather than any subset of them.We propose the first real multiparty semiquantum key agreement(SQKA)protocols based on single-photons.Our protocols include only one quantum player,while the others are classical players who only need to measure and prepare states in the classical basis.We first present a symmetric three-party SQKA protocol,where two classical players can fairly negotiate a key with a quantum player by using single-photons as message carriers.Then we present an asymmetric SQKA protocol where a relatively low percentage of quantum states are used for eavesdropping detection.And we further extend them to an asymmetric multiparty SQKA protocol.Our SQKA protocols require fewer quantum resources than the previous SQKA protocols for classical players,especially without requirement of entanglement,which makes them easier to implement using current technologies.Our protocols are secure against external eavesdroppers and are fair against a minority of internal dishonest players.
基金supported by the National Natural Science Foundation of China(Grant No.11904171)the Natural Science Foundation of Jiangsu Province(Grant No.BK20180461).
文摘Multiparty quantum communication is an important branch of quantum networks.It enables private information transmission with information-theoretic security among legitimate parties.We propose a sender-controlled measurement-device-independent multiparty quantum communication protocol.The sender Alice divides a private message into several parts and delivers them to different receivers for secret sharing with imperfect measurement devices and untrusted ancillary nodes.Furthermore,Alice acts as an active controller and checks the security of quantum channels and the reliability of each receiver before she encodes her private message for secret sharing,which makes the protocol convenient for multiparity quantum communication.
基金supported by the National Natural Science Foundation of China(Grant Nos.61501414,61602045,61601171,61309029,11504024 and 61502041)
文摘The need to simultaneously balance security and fairness in quantum key agreement(QKA) makes it challenging to design a flawless QKA protocol, especially a multiparty quantum key agreement(MQKA) protocol. When designing an MQKA protocol,two modes can be used to transmit the quantum information carriers: travelling mode and distributed mode. MQKA protocols usually have a higher qubit efficiency in travelling mode than in distributed mode. Thus, several travelling mode MQKA protocols have been proposed. However, almost all of these are vulnerable to collusion attacks from internal betrayers. This paper proposes an improved MQKA protocol that operates in travelling mode with Einstein-Podolsky-Rosen pairs. More importantly, we present a new travelling mode MQKA protocol that uses single photons, which is more feasible than previous methods under current technologies.
基金supported by the National Natural Science Foundation of China under Grant Nos.62102074 and 62032013the Liaoning Revitalization Talents Program under Grant No.XLYC1902010+1 种基金the Natural Science Foundation of Liaoning Province of China under Grant No.2020-MS-091Fundamental Research Funds for the Central Universities of China under Grant No.N2017015.
文摘Differential privacy(DP)is widely employed for the private data release in the single-party scenario.Data utility could be degraded with noise generated by ubiquitous data correlation,and it is often addressed by sensitivity reduction with correlation analysis.However,increasing multiparty data release applications present new challenges for existing methods.In this paper,we propose a novel correlated differential privacy of the multiparty data release(MP-CRDP).It effectively reduces the merged dataset's dimensionality and correlated sensitivity in two steps to optimize the utility.We also propose a multiparty correlation analysis technique.Based on the prior knowledge of multiparty data,a more reasonable and rigorous standard is designed to measure the correlated degree,reducing correlated sensitivity,and thus improve the data utility.Moreover,by adding noise to the weights of machine learning algorithms and query noise to the release data,MP-CRDP provides the release technology for both low-noise private data and private machine learning algorithms.Comprehensive experiments demonstrate the effectiveness and practicability of the proposed method on the utilized Adult and Breast Cancer datasets.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 61003287, 61170272the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20100005120002+1 种基金the Fok Ying Tong Education Foundation under Grant No. 131067the Fundamental Research Funds for the Central Universities under Grant No. BUPT2012RC0221
文摘Recently, Gao et al.'s [Commun. Theor. Phys. 52 (2009) 421] multiparty quantum secret sharing (MQSS) protocol with two-photon three-dimensional Bell states was enhanced by Hwang et al. [Commun. Theor. Phys. 56 (2011) 79]. The improved protocol removes some unnecessary unitary operations, devices, and transmissions by the technique of decoy single photons and careful modification. However, in this paper, we investigate the security of the improved protocol and find it is insecure. The eavesdropper can steal all Alice's secret information. Furthermore, a feasible modification to remedy the security loophole is put forward. Our improved protocol provides a basic method to modify a kind of MQSS protocols which cannot resist the collusion attack.
文摘The deficiencies of the first threshold Guilbu-Quisquater signature schemepresented by Li-San Liu, Cheng-Kang Chu and Wen-Guey Tzeng arc analysiscd at first, and then a newthreshold Guillou-Quisquater signature scheme is presented. The new scheme isunforgeable and robustagainst any adaptive adversary if the base Guillou-Quisquater signature scheme is unforgeable underthe chosen message attack and computing the discrete logarithm modulo a prime is hard This schemecan also achieve optimal resilience. However, the new scheme does not need the assumption that N isthe product of two safe primes. The basie signature scheme underlying the new scheme is exactlyGuillou-Quisqualtr signature scheme, and the additional strong computation assumption introduced bythe first threshold Guillou-Quisquater scheme is weaken.
基金Supported by the National Natural Science Foundation of China (No. 61070189, 60673065)the National High Technology Development Program (No. 2008AA01Z419)
文摘Numerous privacy-preserving issues have emerged along with the fast development of Internet, both in theory and in real-life applications. To settle the privacy-preserving problems, secure multi-party computation is essential and critical. In this paper, we have solved two problems regarding to how to determine the position relation between points and curves without revealing any private information. Two protocols have been proposed in order to solve the problems in different conditions. In addition, some building blocks have been developed, such as scalar product protocol, so that we can take advantage of them to settle the privacy-preserving computational geometry problems which are a kind of special secure multi-party computation problems. Moreover, oblivious transfer and power series expansion serve as significant parts in our protocols. Analyses and proofs have also been given to argue our conclusion.
基金This work has been supported by the National Natural Science Foundation of China under Grant No.61272519,the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20120005110017,and the National Key Technology R&D Program under Grant No.2012BAH06B02
文摘Despite that existing data sharing systems in online social networks (OSNs) propose to encrypt data before sharing, the multiparty access control of encrypted data has become a challenging issue. In this paper, we propose a secure data sharing scheme in 0SNs based on ciphertext-policy attribute- based proxy re-encryption and secret sharing. In order to protect users' sensitive data, our scheme allows users to customize access policies of their data and then outsource encrypted data to the OSNs service provider. Our scheme presents a multiparty access control model, which enables the disseminator to update the access policy of ciphertext if their attributes satisfy the existing access policy. Further, we present a partial decryption construction in which the computation overhead of user is largely reduced by delegating most of the decryption operations to the OSNs service provider. We also provide checkability on the results returned from the OSNs service provider to guarantee the correctness of partial decrypted ciphertext. Moreover, our scheme presents an efficient attribute revocation method that achieves both forward and backward secrecy. The security and performance analysis results indicate that the proposed scheme is secure and efficient in OSNs.
文摘Grand-multiparity is a serious risk factor in pregnancy and common in developing countries. The objective was to compare the obstetric outcome of grand-multiparous women with that of low parity in our center. The study comprised of 150 grand-multiparous women (cases) and 150 multiparous women (para 2 - 4) in this index pregnancy as controls matched for age and admitted for delivery. The mean age of the grand-multiparous women at delivery was 37.0 ± 2.8 years. Grand-multiparity was significantly higher among women with only primary education (48.0% versus 44.7%), polygamous marriages (9.3% versus 3.3%) and Muslims (17.3% versus 6.7%). Pregnancy induced hypertension and primary postpartum hemorrhage were significantly more often seen among grand-multiparous women than among the controls. The mean packed cell volume before delivery in the grand-multiparous women was significantly lower (33.6% ± 2.7%) than in the multiparous group (35.2% ± 2.7%) (P-value = 0.000). Grand-multiparity with its associated complications still occurs frequently in our environment. However, with adequate antenatal surveillance, optimal care during labour and contraceptive use, these problems will be reduced.