[Objective] Cloning of the AtrMYB transcription factor gene from Acer truncatum was conducted to further explore the red leaf development mechanism and breed cultivars of colored-leaf maple. [Method] The Acer truncat...[Objective] Cloning of the AtrMYB transcription factor gene from Acer truncatum was conducted to further explore the red leaf development mechanism and breed cultivars of colored-leaf maple. [Method] The Acer truncatum ‘Luhong No.1' cultivar was used as the material for cloning the MYB gene by mean of RTPCR and RACE-PCR. [Results] Sequence analysis showed that the fragment contained a full coding region of 831 bp encoding 276 amino acid residues with a molecular weight of 32.17 kD and a molecular formula C_(1430)H_(14052)N_(2247)O_(406)S_(14). The gene was named as AtrMYB with a Gen Bank accession number of 1825712. This coded protein had apI of 9.44. The results showed that the AtrMYB exhibited typical features of the R2R3-MYB domain. The AtrMYB was highly homologous with the MYB of other species at nucleotide and amino acid levels. The AtrMYB had no signal peptide, but a nuclear localization signal. The phylogenetic tree showed that the AtrMYB was at the same clade as the MYB from Citrus sinensis. [Conclusion] The AtrMYB was cloned from Acer truncatum ‘Luhong No.1' cultivar. These results have provided a foundation for further purification and identification of target protein and function study of the AtrMYB.展开更多
SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 h...SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 has rarely been explored.In this study,we identified a MYB transcription factor,SrMYB1,using a yeast one-hybrid screening assay.SrMYB1 belongs to the typical R2R3-type MYB protein and is specifically localized in the nucleus with strong transactivation activity.The transcript of SrMYB1 is predominantly accumulated in flowers,but is also present at a lower level in leaves.Yeast one-hybrid and electrophoretic mobility shift assays verified that SrMYB1 binds directly to the MYB binding sites in the F4-3 fragment(+50–(–141))of the SrUGT76G1 promoter.Furthermore,we found that SrMYB1 could significantly repress the expression of SrUGT76G1 in both epidermal cells of tobacco leaves and stevia callus.Taken together,our results demonstrate that SrMYB1 is an essential upstream regulator of SrUGT76G1 and provide novel insight into the regulatory network for the SGs metabolic pathway in S.rebaudiana.展开更多
Radish(Raphanus sativus L.), an important root vegetable crop of the Brassicaceae family, has a high level of anthocyanin accumulation in its pigment root tissues. It was reported that MYB transcription factors(TFs) p...Radish(Raphanus sativus L.), an important root vegetable crop of the Brassicaceae family, has a high level of anthocyanin accumulation in its pigment root tissues. It was reported that MYB transcription factors(TFs) play vital roles in plant development and anthocyanin metabolism, and the PAP1/2 could promote expression of anthocyanin biosynthesis genes. In this study, a total of 187 radish MYB genes(Rs MYBs) were identified in the radish genome and clustered into 32 subfamilies. Among them, 159 Rs MYBs were localized on nine radish chromosomes. Interestingly, 14 Rs MYBs exhibited differential expression profiles in different taproot developmental stages among four differently colored radish lines. A number of Rs MYBs were highly expressed in the pigmented root tissues at the maturity stage, several genes including Rs MYB41, Rs MYB117, and Rs MYB132 being homologous to PAP1/2, showed high expression levels in the red skin of NAU-YH(red skin-white flesh) taproot, while Rs MYB65 and Rs MYB159 were highly expressed in the purple root skin of NAU-YZH(purple skin-red flesh), indicating that these Rs MYBs might positively regulate the process of anthocyanin accumulation in radish taproot. These results would provide valuable information for further functional characterization of Rs MYBs, and facilitate clarifying the molecular mechanism underlying anthocyanin biosynthesis in radish.展开更多
Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we...Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we identified 270 MYB genes in ZBM and divided them into four subfamilies. The R2 R3-MYB(ZbMYB) category contained 251 genes and was classified into 33 subfamilies according to their phylogenetic results and sequence similarity. These subfamilies included 24 subgroups containing both MYBs of ZBM plants and AtMYBs, and nine subgroups containing only ZBM MYBs or AtMYBs. ZbMYBs with similar functions clustered into the same subgroup, indicating functional conservation. The subcellular localization analysis predicted that most ZbMYB genes were found in the nucleus. The transposed duplications appeared to play a major role in the expansion of the MYB gene family in ZBM. Through phylogenetic analysis and transcriptome profiling, it was found that 28 ZbMYB genes may regulate the biosynthesis of flavonoids in ZBM, and these genes expression presented distinct temporal and spatial expression patterns. In different fruit development stages of ZBM, the expression patterns of EVM0042160 and EVM0033809 genes obtained by qRT-PCR analysis are very similar to the flavonoid and anthocyanin content curves in ZBM. Further correlation analysis showed that the content of flavonoids in different fruit development stages and the transcript abundance levels of 28 ZbMYB genes have different degrees of correlation relationship. These results indicated that the ZbMYB genes might be involved in the flavonoid metabolic pathway. This comprehensive and systematic analysis of MYB family genes provided a solid foundation for further functional analysis of MYB TFs in ZBM.展开更多
基金Supported by Agricultural Elite Cultivar Project of Shandong Province(lkz2014[96])~~
文摘[Objective] Cloning of the AtrMYB transcription factor gene from Acer truncatum was conducted to further explore the red leaf development mechanism and breed cultivars of colored-leaf maple. [Method] The Acer truncatum ‘Luhong No.1' cultivar was used as the material for cloning the MYB gene by mean of RTPCR and RACE-PCR. [Results] Sequence analysis showed that the fragment contained a full coding region of 831 bp encoding 276 amino acid residues with a molecular weight of 32.17 kD and a molecular formula C_(1430)H_(14052)N_(2247)O_(406)S_(14). The gene was named as AtrMYB with a Gen Bank accession number of 1825712. This coded protein had apI of 9.44. The results showed that the AtrMYB exhibited typical features of the R2R3-MYB domain. The AtrMYB was highly homologous with the MYB of other species at nucleotide and amino acid levels. The AtrMYB had no signal peptide, but a nuclear localization signal. The phylogenetic tree showed that the AtrMYB was at the same clade as the MYB from Citrus sinensis. [Conclusion] The AtrMYB was cloned from Acer truncatum ‘Luhong No.1' cultivar. These results have provided a foundation for further purification and identification of target protein and function study of the AtrMYB.
基金supported by the National Natural Science Foundation of China(31901597)the Natural Science Foundation of Jiangsu Province,China(BK20201243)。
文摘SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 has rarely been explored.In this study,we identified a MYB transcription factor,SrMYB1,using a yeast one-hybrid screening assay.SrMYB1 belongs to the typical R2R3-type MYB protein and is specifically localized in the nucleus with strong transactivation activity.The transcript of SrMYB1 is predominantly accumulated in flowers,but is also present at a lower level in leaves.Yeast one-hybrid and electrophoretic mobility shift assays verified that SrMYB1 binds directly to the MYB binding sites in the F4-3 fragment(+50–(–141))of the SrUGT76G1 promoter.Furthermore,we found that SrMYB1 could significantly repress the expression of SrUGT76G1 in both epidermal cells of tobacco leaves and stevia callus.Taken together,our results demonstrate that SrMYB1 is an essential upstream regulator of SrUGT76G1 and provide novel insight into the regulatory network for the SGs metabolic pathway in S.rebaudiana.
基金in part supported by the National Key Research and Development Program of China (2017YFD0101806)the Open Funds of State Key Laboratory of Crop Genetics and Germplasm Enhancement, China (ZW201709)+1 种基金the Key Laboratory of Biology and Genetics Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, China (IVF201706)the Jiangsu Agricultural Science and Technology Innovation Fund, China (CX(19)3045)。
文摘Radish(Raphanus sativus L.), an important root vegetable crop of the Brassicaceae family, has a high level of anthocyanin accumulation in its pigment root tissues. It was reported that MYB transcription factors(TFs) play vital roles in plant development and anthocyanin metabolism, and the PAP1/2 could promote expression of anthocyanin biosynthesis genes. In this study, a total of 187 radish MYB genes(Rs MYBs) were identified in the radish genome and clustered into 32 subfamilies. Among them, 159 Rs MYBs were localized on nine radish chromosomes. Interestingly, 14 Rs MYBs exhibited differential expression profiles in different taproot developmental stages among four differently colored radish lines. A number of Rs MYBs were highly expressed in the pigmented root tissues at the maturity stage, several genes including Rs MYB41, Rs MYB117, and Rs MYB132 being homologous to PAP1/2, showed high expression levels in the red skin of NAU-YH(red skin-white flesh) taproot, while Rs MYB65 and Rs MYB159 were highly expressed in the purple root skin of NAU-YZH(purple skin-red flesh), indicating that these Rs MYBs might positively regulate the process of anthocyanin accumulation in radish taproot. These results would provide valuable information for further functional characterization of Rs MYBs, and facilitate clarifying the molecular mechanism underlying anthocyanin biosynthesis in radish.
基金financially supported by the National Key R&D Program of China(2018YFD1000605)the Project of Science and Technology Development Center,National Forestry and Grassland Administration,China(KJZXSA202025)。
文摘Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we identified 270 MYB genes in ZBM and divided them into four subfamilies. The R2 R3-MYB(ZbMYB) category contained 251 genes and was classified into 33 subfamilies according to their phylogenetic results and sequence similarity. These subfamilies included 24 subgroups containing both MYBs of ZBM plants and AtMYBs, and nine subgroups containing only ZBM MYBs or AtMYBs. ZbMYBs with similar functions clustered into the same subgroup, indicating functional conservation. The subcellular localization analysis predicted that most ZbMYB genes were found in the nucleus. The transposed duplications appeared to play a major role in the expansion of the MYB gene family in ZBM. Through phylogenetic analysis and transcriptome profiling, it was found that 28 ZbMYB genes may regulate the biosynthesis of flavonoids in ZBM, and these genes expression presented distinct temporal and spatial expression patterns. In different fruit development stages of ZBM, the expression patterns of EVM0042160 and EVM0033809 genes obtained by qRT-PCR analysis are very similar to the flavonoid and anthocyanin content curves in ZBM. Further correlation analysis showed that the content of flavonoids in different fruit development stages and the transcript abundance levels of 28 ZbMYB genes have different degrees of correlation relationship. These results indicated that the ZbMYB genes might be involved in the flavonoid metabolic pathway. This comprehensive and systematic analysis of MYB family genes provided a solid foundation for further functional analysis of MYB TFs in ZBM.