This article is about illustrating a workflow for incorporating reliability measures to typical electric machine design optimization scenarios.Such measures facilitate comparing designs not only for rated conditions,b...This article is about illustrating a workflow for incorporating reliability measures to typical electric machine design optimization scenarios.Such measures facilitate comparing designs not only for rated conditions,but also allow to analyze their performance in the presence of unevitable tolerances.Consequently,by additionally considering reliability or robustness as objectives compared to conventional optimization scenarios,designs featuring low parameter sensitiveness can be obtained.The analysis of the design’s reliability as part of solving optimization problems involves a significant increase in required numerical evaluations.To minimize the associated prolongation of the runtime,an approach featuring a design of experiments based reduction of required computations and a consequent surrogate modeling technique is presented here.After successful training,the metamodel can be applied for fast evaluating lots of different parameter combinations.A test problem is defined and analyzed.Based on the observed findings,the necessity of incorporating robustness evaluations to machine design optimization becomes evident.In addition,the derived models allow for studying the impact of any tolerance-affected parameter on the machine performance in detail.This facilitates further beneficial studies,as for instance the analysis of selected changes of tolerance levels rather than a general minimization of the respective ranges which usually is associated with high production cost.展开更多
The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for so...The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor a...The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.展开更多
In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensivel...In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensively reviewed in terms of basic features,merits and demerits,and compared for HEV/EV traction applications.Their latest developments are highlighted while their electromagnetic performance are quantitatively compared based on the same specification as the Prius 2010 interior PM(IPM)machine,including the torque/power-speed characteristics,power factor,efficiency map,and drive cycle based overall efficiency.It is found that PM-assisted synchronous reluctance machines are the most promising alternatives to IPM machines with lower cost and potentially higher overall efficiency.Although IMs are cheaper and have better overload capability,they exhibit lower efficiency and power factor.Other electrical machines,such as synchronous reluctance machines,wound field machines,as well as many other newly developed machines,are currently less attractive due to lower torque density and efficiency.展开更多
A numerical-analytical method is applied for the two-dimensional magnetic field computation in rotational electric machines in this paper. The analytical expressions for air gap magnetic field are derived. The pole pa...A numerical-analytical method is applied for the two-dimensional magnetic field computation in rotational electric machines in this paper. The analytical expressions for air gap magnetic field are derived. The pole pairs in the expressions are taken into account so that the solution region can be reduced within one periodic range. The numerical and analytical magnetic field equations are linked with equal vector magnetic potential boundary conditions. The magnetic field of a brushless permanent magnet machine is computed by the proposed method. The result is compared to that obtained by finite element method so as to validate the correction of the method.展开更多
This article is about a comparison of different measures for determining the robustness or reliability of electric machine designs in the presence of inevitable tolerances.The selected criteria shall be suitable for c...This article is about a comparison of different measures for determining the robustness or reliability of electric machine designs in the presence of inevitable tolerances.The selected criteria shall be suitable for concurrent evaluation in the course of solving state-of-the-art large scale multi-objective opti-mization problems.In the past,besides particularly customized criteria,mainly gradient based measures,worst case information,or standard deviation based quantities were considered.In this work,the quantile measure is introduced for electric machine design optimization and compared with the existing solutions.The evaluation of a design’s robustness is typically examined based on finite element simulations.As for most measures a signif-icant number of parameter combinations and thus computations are required,a surrogate model assisted approach is presented to minimize computational effort and runtime.A test problem is defined and analyzed to illustrate the differences of selected robustness measures.Results reveal the importance of considering robustness in the optimization process.Moreover,a careful choice of appropriate measures has to be taken.Selected designs are compared and conclusions and an outlook on future activities are presented.展开更多
Finite state machine theory (FSM) is introduced and applied to global control of electric vehicle. Theoretical adaptation for application of FSM in control of electric vehicle is analyzed. Global control logic for par...Finite state machine theory (FSM) is introduced and applied to global control of electric vehicle. Theoretical adaptation for application of FSM in control of electric vehicle is analyzed. Global control logic for parts of electric vehicle is analyzed and built based on FSM. Using Matlab/Simulink, BJD6100-HEV global control algorithm is modeled and prove validity by simulation.展开更多
The machine tool is one of the new products developed and produced by the Shanghai No.8 Machine Tool Plant. It adopts a lift adjustable wiretrame and molybdenum filament tensioning mechanism with large cutting thickne...The machine tool is one of the new products developed and produced by the Shanghai No.8 Machine Tool Plant. It adopts a lift adjustable wiretrame and molybdenum filament tensioning mechanism with large cutting thickness and high machining precision. It is equipped with an advanced IBM-PC 386 microcomputer-controlled system, with strong performance and CRT display. Man/展开更多
On April 26th, 2005, the 5th World Intellectual Property Day, the China Association for Standardization (CAS) held the press conference on CAS standard--Household Electric Double-driver Washing Machine in Diao Yu Tai ...On April 26th, 2005, the 5th World Intellectual Property Day, the China Association for Standardization (CAS) held the press conference on CAS standard--Household Electric Double-driver Washing Machine in Diao Yu Tai State Guest House in Beijing. The topic of the press conference was to Promote Technical Innovation, to Protect Intellectual Property and to Develop International Standard. Mr. Ma Lincong, General Secretary of CAS hosted the press conference.展开更多
Using expert systems in intelligent CAD of electrical machines have limitations such as knowledge acquisition bottlenecks and matching conflict, combinatorial explosion, and endless recursion in the reasoning process....Using expert systems in intelligent CAD of electrical machines have limitations such as knowledge acquisition bottlenecks and matching conflict, combinatorial explosion, and endless recursion in the reasoning process. This paper discusses the principle of a hybrid system of a neural network and an expert system (HNNES), i.e., knowledge representation, reasoning mechanism, and knowledge acquisition based on neural networks. An architecture of HNNES is presented in consideration of the feature of the design of electrical machines.展开更多
Nowadays, PD (partial discharge) measurements are a crucial part of the preventive maintenance of electrical equipment within high voltage engineering. Especially for electrical machines, both the supplier and the u...Nowadays, PD (partial discharge) measurements are a crucial part of the preventive maintenance of electrical equipment within high voltage engineering. Especially for electrical machines, both the supplier and the user are interested in the results of PD measurements. However, PDs hardly represent the cause of the failure, more likely they are claimed as the outcome of a failure. This paper deals with the insulation of a 6 kV electrical machine, whereas PD measurements were carried out at a single stator from wound coils. During manufacturing, these coils were equipped with different materials for the OCP (outer corona protection). Using different PD measurement systems and different bandwidths, investigations of the PD behavior of the coils were carried out. Additionally, the surface resistivity of the corona protection was determined. As a result, conclusions for the correlations between the resistance of the OCP as well as the PD behavior are stated. Furthermore, the influence of using different measurement systems, different measuring circuits, and different bandwidths is shown.展开更多
The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and...The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.展开更多
In order to improve the bidirectional associative memory(BAM) performance, a modified BAM model(MBAM) is used to enhance neural network(NN)’s memory capacity and error correction capability, theoretical analysis and ...In order to improve the bidirectional associative memory(BAM) performance, a modified BAM model(MBAM) is used to enhance neural network(NN)’s memory capacity and error correction capability, theoretical analysis and experiment results illuminate that MBAM performs much better than the original BAM. The MBAM is used in computer numeric control(CNC) machine fault diagnosis, it not only can complete fault diagnosis correctly but also have fairly high error correction capability for disturbed Input Information sequence.Moreover MBAM model is a more convenient and effective method of solving the problem of CNC electric system fault diagnosis.展开更多
Gap debris as discharge product is closely related to machining process in electrical discharge machining(EDM). A lot of recent researches have focused on the relationship among debris size, surfaces texture, remove...Gap debris as discharge product is closely related to machining process in electrical discharge machining(EDM). A lot of recent researches have focused on the relationship among debris size, surfaces texture, remove rate, and machining stability. The study on statistical distribution of debris size contributes to the research, but it is still superficial currently. In order to obtain the distribution law of the debris particle size, laser particle size analyzer(LPSA) combined with scanning electron microscope(SEM) is used to analyze the EDM debris size. Firstly, the heating dried method is applied to obtain the debris particles. Secondly, the measuring range of LPSA is determined as 0.5–100 μm by SEM observation, and the frequency distribution histogram and the cumulative frequency distribution scattergram of debris size are obtained by using LPSA. Thirdly, according to the distribution characteristic of the frequency distribution histogram, the statistical distribution functions of lognormal, exponentially modified Gaussian(EMG), Gamma and Weibull are chosen to achieve curve fitting of the histogram. At last, the distribute law of the debris size is obtained by fitting results. Experiments with different discharge parameters are carried out on an EDM machine designed by the authors themselves, and the machining conditions are tool electrode of red-copper material, workpiece of ANSI 1045 material and working fluid of de-ionized water. The experimental results indicate that the debris sizes of all experiment sample truly obey the Weibull distribution. The obtained distribution law is significantly important for all the models established based on the debris particle size.展开更多
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the m...Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.展开更多
Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and...Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and time consuming. In this paper, artificial neural network (ANN) and genetic algorithm (GA) are used together to establish the parameter optimization model. An ANN model which adapts Levenberg-Marquardt algorithm has been set up to represent the relationship between material removal rate (MRR) and input parameters, and GA is used to optimize parameters, so that optimization results are obtained. The model is shown to be effective, and MRR is improved using optimized machining parameters.展开更多
This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface wi...This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft.展开更多
The main purpose of this article is to provide an instructive review of the technological challenges hindering the road toward more electric powertrains in aircraft.Hybrid,all-electric,and turboelectric powertrain arc...The main purpose of this article is to provide an instructive review of the technological challenges hindering the road toward more electric powertrains in aircraft.Hybrid,all-electric,and turboelectric powertrain architectures are discussed as possible fuel consumption and weight reduction solutions.Among these architectures,the short-term implementation of hybrid and all-electric architectures is limited,particularly for large-capacity aircraft due to the low energy/power density levels achievable by state-of-the-art electrical energy storage systems.Conversely,turboelectric architectures with advanced distributed propulsion and boundary layer ingestion are set to lead the efforts toward more electric powertrains.At the center of this transition,power converters and high-power density electric machines,i.e.,electric motors and generators,and their corresponding thermal management systems are analyzed as the key devices enabling the more electric powertrain.Moreover,to further increase the fuel efficiency and power density of the aircraft,the benefits and challenges of implementing higher voltage powertrains are described.Lastly,based on the findings collected in this article,the projected roadmap toward more electric aircraft powertrains is presented.Herein,the individual targets for each technology,i.e.,batteries,electric machines,and power converters,and how they translate to future aircraft prototypes are illustrated.展开更多
Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the a...Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM.展开更多
基金This work has been supported by the COMET-K2“Center for Symbiotic Mechatronics”of the Linz Center of Mechatronics(LCM)funded by the Austrian federal government and the federal state of Upper Austria.
文摘This article is about illustrating a workflow for incorporating reliability measures to typical electric machine design optimization scenarios.Such measures facilitate comparing designs not only for rated conditions,but also allow to analyze their performance in the presence of unevitable tolerances.Consequently,by additionally considering reliability or robustness as objectives compared to conventional optimization scenarios,designs featuring low parameter sensitiveness can be obtained.The analysis of the design’s reliability as part of solving optimization problems involves a significant increase in required numerical evaluations.To minimize the associated prolongation of the runtime,an approach featuring a design of experiments based reduction of required computations and a consequent surrogate modeling technique is presented here.After successful training,the metamodel can be applied for fast evaluating lots of different parameter combinations.A test problem is defined and analyzed.Based on the observed findings,the necessity of incorporating robustness evaluations to machine design optimization becomes evident.In addition,the derived models allow for studying the impact of any tolerance-affected parameter on the machine performance in detail.This facilitates further beneficial studies,as for instance the analysis of selected changes of tolerance levels rather than a general minimization of the respective ranges which usually is associated with high production cost.
基金This work was supported by the National Nature Science Foundation of China(NSFC)under Project 51607079.
文摘The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
基金supported in part by the Jiangsu Natural Science Foundation of China under Grant BK20180013in part by the Shenzhen Science and Technology Innovation Committee(STIC)under Grant JCYJ20180306174439784.
文摘The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.
基金This work is partially supported by Guangdong Welling Motor Manufacturing Co.,Ltd and Guangdong Innovative Research Team Program(No.2011N084)China,Valeo Electrical Systems,France,and the Royal Academy of Engineering/Siemens Research Chair Program,UK.
文摘In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensively reviewed in terms of basic features,merits and demerits,and compared for HEV/EV traction applications.Their latest developments are highlighted while their electromagnetic performance are quantitatively compared based on the same specification as the Prius 2010 interior PM(IPM)machine,including the torque/power-speed characteristics,power factor,efficiency map,and drive cycle based overall efficiency.It is found that PM-assisted synchronous reluctance machines are the most promising alternatives to IPM machines with lower cost and potentially higher overall efficiency.Although IMs are cheaper and have better overload capability,they exhibit lower efficiency and power factor.Other electrical machines,such as synchronous reluctance machines,wound field machines,as well as many other newly developed machines,are currently less attractive due to lower torque density and efficiency.
文摘A numerical-analytical method is applied for the two-dimensional magnetic field computation in rotational electric machines in this paper. The analytical expressions for air gap magnetic field are derived. The pole pairs in the expressions are taken into account so that the solution region can be reduced within one periodic range. The numerical and analytical magnetic field equations are linked with equal vector magnetic potential boundary conditions. The magnetic field of a brushless permanent magnet machine is computed by the proposed method. The result is compared to that obtained by finite element method so as to validate the correction of the method.
文摘This article is about a comparison of different measures for determining the robustness or reliability of electric machine designs in the presence of inevitable tolerances.The selected criteria shall be suitable for concurrent evaluation in the course of solving state-of-the-art large scale multi-objective opti-mization problems.In the past,besides particularly customized criteria,mainly gradient based measures,worst case information,or standard deviation based quantities were considered.In this work,the quantile measure is introduced for electric machine design optimization and compared with the existing solutions.The evaluation of a design’s robustness is typically examined based on finite element simulations.As for most measures a signif-icant number of parameter combinations and thus computations are required,a surrogate model assisted approach is presented to minimize computational effort and runtime.A test problem is defined and analyzed to illustrate the differences of selected robustness measures.Results reveal the importance of considering robustness in the optimization process.Moreover,a careful choice of appropriate measures has to be taken.Selected designs are compared and conclusions and an outlook on future activities are presented.
文摘Finite state machine theory (FSM) is introduced and applied to global control of electric vehicle. Theoretical adaptation for application of FSM in control of electric vehicle is analyzed. Global control logic for parts of electric vehicle is analyzed and built based on FSM. Using Matlab/Simulink, BJD6100-HEV global control algorithm is modeled and prove validity by simulation.
文摘The machine tool is one of the new products developed and produced by the Shanghai No.8 Machine Tool Plant. It adopts a lift adjustable wiretrame and molybdenum filament tensioning mechanism with large cutting thickness and high machining precision. It is equipped with an advanced IBM-PC 386 microcomputer-controlled system, with strong performance and CRT display. Man/
文摘On April 26th, 2005, the 5th World Intellectual Property Day, the China Association for Standardization (CAS) held the press conference on CAS standard--Household Electric Double-driver Washing Machine in Diao Yu Tai State Guest House in Beijing. The topic of the press conference was to Promote Technical Innovation, to Protect Intellectual Property and to Develop International Standard. Mr. Ma Lincong, General Secretary of CAS hosted the press conference.
文摘Using expert systems in intelligent CAD of electrical machines have limitations such as knowledge acquisition bottlenecks and matching conflict, combinatorial explosion, and endless recursion in the reasoning process. This paper discusses the principle of a hybrid system of a neural network and an expert system (HNNES), i.e., knowledge representation, reasoning mechanism, and knowledge acquisition based on neural networks. An architecture of HNNES is presented in consideration of the feature of the design of electrical machines.
文摘Nowadays, PD (partial discharge) measurements are a crucial part of the preventive maintenance of electrical equipment within high voltage engineering. Especially for electrical machines, both the supplier and the user are interested in the results of PD measurements. However, PDs hardly represent the cause of the failure, more likely they are claimed as the outcome of a failure. This paper deals with the insulation of a 6 kV electrical machine, whereas PD measurements were carried out at a single stator from wound coils. During manufacturing, these coils were equipped with different materials for the OCP (outer corona protection). Using different PD measurement systems and different bandwidths, investigations of the PD behavior of the coils were carried out. Additionally, the surface resistivity of the corona protection was determined. As a result, conclusions for the correlations between the resistance of the OCP as well as the PD behavior are stated. Furthermore, the influence of using different measurement systems, different measuring circuits, and different bandwidths is shown.
文摘The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.
文摘In order to improve the bidirectional associative memory(BAM) performance, a modified BAM model(MBAM) is used to enhance neural network(NN)’s memory capacity and error correction capability, theoretical analysis and experiment results illuminate that MBAM performs much better than the original BAM. The MBAM is used in computer numeric control(CNC) machine fault diagnosis, it not only can complete fault diagnosis correctly but also have fairly high error correction capability for disturbed Input Information sequence.Moreover MBAM model is a more convenient and effective method of solving the problem of CNC electric system fault diagnosis.
基金supported by Research Fund for the Doctoral Program of Ministry of Education of China(Grant No.20090041110031)National Natural Science Foundation of China(Grant No.50575033)
文摘Gap debris as discharge product is closely related to machining process in electrical discharge machining(EDM). A lot of recent researches have focused on the relationship among debris size, surfaces texture, remove rate, and machining stability. The study on statistical distribution of debris size contributes to the research, but it is still superficial currently. In order to obtain the distribution law of the debris particle size, laser particle size analyzer(LPSA) combined with scanning electron microscope(SEM) is used to analyze the EDM debris size. Firstly, the heating dried method is applied to obtain the debris particles. Secondly, the measuring range of LPSA is determined as 0.5–100 μm by SEM observation, and the frequency distribution histogram and the cumulative frequency distribution scattergram of debris size are obtained by using LPSA. Thirdly, according to the distribution characteristic of the frequency distribution histogram, the statistical distribution functions of lognormal, exponentially modified Gaussian(EMG), Gamma and Weibull are chosen to achieve curve fitting of the histogram. At last, the distribute law of the debris size is obtained by fitting results. Experiments with different discharge parameters are carried out on an EDM machine designed by the authors themselves, and the machining conditions are tool electrode of red-copper material, workpiece of ANSI 1045 material and working fluid of de-ionized water. The experimental results indicate that the debris sizes of all experiment sample truly obey the Weibull distribution. The obtained distribution law is significantly important for all the models established based on the debris particle size.
基金supported by National Natural Science Foundation of China(Grant No.50675049)
文摘Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.
基金Project supported by the National Natural Science Foundation of China (Nos. 50575128 and 50775128)the Outstanding Young Scientist Foundation of Shandong Province (No. 2005BS05004), China
文摘Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and time consuming. In this paper, artificial neural network (ANN) and genetic algorithm (GA) are used together to establish the parameter optimization model. An ANN model which adapts Levenberg-Marquardt algorithm has been set up to represent the relationship between material removal rate (MRR) and input parameters, and GA is used to optimize parameters, so that optimization results are obtained. The model is shown to be effective, and MRR is improved using optimized machining parameters.
文摘This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft.
文摘The main purpose of this article is to provide an instructive review of the technological challenges hindering the road toward more electric powertrains in aircraft.Hybrid,all-electric,and turboelectric powertrain architectures are discussed as possible fuel consumption and weight reduction solutions.Among these architectures,the short-term implementation of hybrid and all-electric architectures is limited,particularly for large-capacity aircraft due to the low energy/power density levels achievable by state-of-the-art electrical energy storage systems.Conversely,turboelectric architectures with advanced distributed propulsion and boundary layer ingestion are set to lead the efforts toward more electric powertrains.At the center of this transition,power converters and high-power density electric machines,i.e.,electric motors and generators,and their corresponding thermal management systems are analyzed as the key devices enabling the more electric powertrain.Moreover,to further increase the fuel efficiency and power density of the aircraft,the benefits and challenges of implementing higher voltage powertrains are described.Lastly,based on the findings collected in this article,the projected roadmap toward more electric aircraft powertrains is presented.Herein,the individual targets for each technology,i.e.,batteries,electric machines,and power converters,and how they translate to future aircraft prototypes are illustrated.
基金supported by National Natural Science Foundation of China (Grant No. 50905094)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA044204, Grant No. 2009AA044205)China Postdoctoral Science Foundation (Grant No. 20080440378, Grant No. 200902097)
文摘Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM.