期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Process Modeling of Ferrofluids Flow for Magnetic Targeting Drug Delivery
1
作者 LIU Handan WANG Shigang XU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期440-445,共6页
Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although ther... Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application. 展开更多
关键词 magnetic targeting drug delivery FERROFLUIDS magnetic nano-particels process modeling HYDRODYNAMICS computational fluid dynamics(CFD) numerical simulation magnetic resonance imaging
下载PDF
Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery
2
作者 刘菡萏 徐威 +1 位作者 王石刚 柯遵纪 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第10期1341-1349,共9页
Among the proposed techniques for delivering drugs to specific locations within human body, magnetic drug targeting prevails due to its non-invasive character and its high targeting efficiency. Magnetic targeting drug... Among the proposed techniques for delivering drugs to specific locations within human body, magnetic drug targeting prevails due to its non-invasive character and its high targeting efficiency. Magnetic targeting drug delivery is a method of carrying drug-loaded magnetic nanoparticles to a target tissue target under the applied magnetic field. This method increases the drug concentration in the target while reducing the adverse side-effects. Although there have been some theoretical analyses for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel. A mathematical model is presented to describe the hydrodynamics of ferrofiuids as drug carriers flowing in a blood vessel under the applied magnetic field. In this model, magnetic force and asymmetrical force are added, and an angular momentum equation of magnetic nanoparticles in the applied magnetic field is modeled. Engineering approximations are achieved by retaining the physically most significant items in the model due to the mathematical complexity of the motion equations. Numerical simulations are performed to obtain better insight into the theoretical model with computational fluid dynamics. Simulation results demonstrate the important parameters leading to adequate drug delivery to the target site depending on the magnetic field intensity, which coincident with those of animal experiments. Results of the analysis provide important information and suggest strategies for improving delivery in clinical application. 展开更多
关键词 magnetic targeting drug delivery FERROFLUIDS magnetic nanoparticles hydrodynamic modeling CFD simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部