期刊文献+
共找到709篇文章
< 1 2 36 >
每页显示 20 50 100
Segmental Kinematic Coupling of the Human Spinal Column during Locomotion 被引量:2
1
作者 Guo-ru Zhao Lei Ren +3 位作者 Lu-quan Ren John R. Hutchinson Li-mei Tian Jian S. Dai 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第4期328-334,共7页
As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well underst... As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine. 展开更多
关键词 BIOMECHANICS spinal cofumn human locomotion in-vivo segmental kinematics motion analysis STEREOPHOTOGRAMMETRY kinematic coupling
下载PDF
Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade
2
作者 Zhan Wang Liang Li +3 位作者 Long Wang Weidong Zhu Yinghui Li Echuan Yang 《Energy Engineering》 EI 2024年第10期2981-3000,共20页
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl... Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little. 展开更多
关键词 Pitch motion wind turbine blade inherent rigid-flexible coupling vibration characteristics
下载PDF
Monolithic Coupling of the Pressure and Rigid Body Motion Equations in Computational Marine Hydrodynamics
3
作者 Hrvoje Jasak Inno Gatin Vuko Vukcevic 《Journal of Marine Science and Application》 CSCD 2017年第4期375-381,共7页
In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned man... In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy. 展开更多
关键词 MONOLITHIC coupling pressure equation rigid body motion COMPUTATIONAL fluid dynamics MARINE HYDRODYNAMICS SEAKEEPING
下载PDF
Reassessment of electromagnetic core-mantle coupling and its implications to the Earth’s decadal polar motion
4
作者 Weijia Kuang Benjamin F.Chao Jianli Chen 《Geodesy and Geodynamics》 2019年第5期356-362,共7页
The observed Earth’s polar motion on decadal time scales has long been conjectured to be excited by the exchange of equatorial angular momentum between the solid mantle and the fluid outer core,via the mechanism of e... The observed Earth’s polar motion on decadal time scales has long been conjectured to be excited by the exchange of equatorial angular momentum between the solid mantle and the fluid outer core,via the mechanism of electromagnetic(EM)core-mantle coupling.However,past estimations of the EM coupling torque from surface geomagnetic observations is too weak to account for the observed decadal polar motion.Our recent estimations from numerical geodynamo simulations have shown the opposite.In this paper,we re-examine in detail the EM coupling mechanism and the properties of the magnetic field in the electrically conducting lower mantle(characterized by a thin D '-layer at the base of the mantle).Our simulations find that the toroidal field in the D'-layer from the induction and convection of the toroidal field in the outer core could be potentially much stronger than that from the advection of the poloidal field in the outer core.The former,however,cannot be inferred from geomagnetic observations at the Earth’s surface,and is missing in previous EM torque estimated from geomagnetic observations.Our deduction suggests further that this field could make the actual EM coupling torque sufficiently strong,at approximately 5×1019 Nm,to excite,and hence explain,the decadal polar motion to magnitude of approximately 10 mas. 展开更多
关键词 POLAR motion ELECTROMAGNETIC core-mantle coupling GEOMAGNETIC field GEODYNAMO
原文传递
Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
5
作者 Li-Jun Du Yan-Song Meng +1 位作者 Yu-Ling He Jun Xie 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期234-243,共10页
A two-ion pair in a linear Paul trap is extensively used in the research of the simplest quantum-logic system;however,there are few quantitative and comprehensive studies on the motional mode coupling of two-ion syste... A two-ion pair in a linear Paul trap is extensively used in the research of the simplest quantum-logic system;however,there are few quantitative and comprehensive studies on the motional mode coupling of two-ion systems yet.This study proposes a method to investigate the motional mode coupling of sympathetically cooled two-ion crystals by quantifying three-dimensional(3 D)secular spectra of trapped ions using molecular dynamics simulations.The 3 D resonance peaks of the^(40)Ca^(+)–^(27)Al^(+)pair obtained by using this method were in good agreement with the 3 D in-and out-of-phase modes predicted by the mode coupling theory for two ions in equilibrium and the frequency matching errors were lower than 2%.The obtained and predicted amplitudes of these modes were also qualitatively similar.It was observed that the strength of the sympathetic interaction of the^(40)Ca^(+)–^(27)Al^(+)pair was primarily determined by its axial in-phase coupling.In addition,the frequencies and amplitudes of the ion pair's resonance modes(in all dimensions)were sensitive to the relative masses of the ion pair,and a decrease in the mass mismatch enhanced the sympathetic cooling rates.The sympathetic interactions of the^(40)Ca^(+)–^(27)Al^(+)pair were slightly weaker than those of the^(24)Mg^(+)–^(27)Al^(+)pair,but significantly stronger than those of^(9)Be^(+)–^(27)Al^(+).However,the Doppler cooling limit temperature of^(40)Ca^(+)is comparable to that of^(9)Be^(+)but lower than approximately half of that of^(24)Mg^(+).Furthermore,laser cooling systems for^(40)Ca^(+)are more reliable than those for^(24)Mg^(+)and^(9)Be^(+).Therefore,^(40)Ca^(+)is probably the best laser-cooled ion for sympathetic cooling and quantum-logic operations of^(27)Al^(+)and has particularly more notable comprehensive advantages in the development of high reliability,compact,and transportable^(27)Al^(+)optical clocks.This methodology may be extended to multi-ion systems,and it will greatly aid efforts to control the dynamic behaviors of sympathetic cooling as well as the development of low-heating-rate quantum logic clocks. 展开更多
关键词 sympathetic cooling coupled oscillations secular motion radio-frequency ion traps
原文传递
Decoupling Analysis for a Powertrain Mounting System with a Combination of Hydraulic Mounts 被引量:7
6
作者 HU Jinfang CHEN Wuwei HUANG He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期737-745,共9页
The existing torque roll axis(TRA) decoupling theories for a powertrain mounting system assume that the stiffness and viscous damping properties are constant. However, real-life mounts exhibit considerable spectrally ... The existing torque roll axis(TRA) decoupling theories for a powertrain mounting system assume that the stiffness and viscous damping properties are constant. However, real-life mounts exhibit considerable spectrally varying stiffness and damping characteristics, and the influence of the spectrally-varying properties of the hydraulic mounts on the powertrain system cannot be ignored. To overcome the deficiency, an analytical quasi-linear model of the hydraulic mount and the coupled properties of the powertrain and hydraulic mounts system are formulated. The influence of the hydraulic mounts on the TRA decoupling of a powertrain system is analytically examined in terms of eigensolutions, frequency, and impulse responses, and then a new analytical axiom is proposed based on the TRA decoupling indices. With the experimental setup of a fixed decoupler hydraulic mount in the context of non-resonant dynamic stiffness testing procedure, the quasi-linear model of the hydraulic mount is verified by comparing the predictions with the measurement. And the quasi-linear formulation of the coupled system is also verified by comparing the frequency responses with the numerical results obtained by the direct inversion method. Finally, the mounting system with a combination of hydraulic mounts is redesigned in terms of the stiffness, damping and mount locations by satisfying the new axiom. The frequency and time domain results of the redesigned system demonstrate that the torque roll axis of the redesigned powertrain mounting system is indeed decoupled in the presence of hydraulic mounts (given oscillating torque or impulsive torque excitation). The proposed research provides an important basis and method for the research on a powertrain system with spectrally-varying mount properties, especially for the TRA decoupling. 展开更多
关键词 hydraulic mount coupled quasi-linear system motion control TRA decoupling
下载PDF
Dynamic Coupled Analysis of the Floating Platform Using the Asynchronous Coupling Algorithm 被引量:5
7
作者 Shan Ma Wenyang Duan 《Journal of Marine Science and Application》 2014年第1期85-91,共7页
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficienc... This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated. 展开更多
关键词 floating PLATFORM PLATFORM motionS DYNAMIC coupledanalysis ASYNCHRONOUS coupling algorithm MOORING line TENSIONS SPAR PLATFORM
下载PDF
Time-Domain Simulation for Coupled Motions of Three Barges Moored Side-by-Side in Floatover Operation 被引量:12
8
作者 许鑫 杨建民 +1 位作者 李欣 徐亮瑜 《China Ocean Engineering》 SCIE EI CSCD 2015年第2期155-168,共14页
Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investig... Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investigate the hydrodynamic responses of three barges moored side-by-side in a floatover operation in the frequency and time domains. In the frequency domain, the damping lid method is adopted to improve the overestimated hydrodynamic coefficients calculated from conventional potential flow theory. A time-domain computing program based on potential flow theory and impulse theory is compiled for analyses that consider multibody hydrodynamic interactions and mechanical effects from lines and fenders. Correspondingly, an experiment is carried out for comparison with the numerical results. All statistics, time series, and power density spectra from decay and irregular wave tests are in a fairly good agreement. 展开更多
关键词 coupled motion time-domain simulation side-by-side floatover
下载PDF
A Coupled Analysis of Nonlinear Sloshing and Ship Motion 被引量:4
9
作者 Shuo Huang Wenyang Duan Hao Zhang 《Journal of Marine Science and Application》 2012年第4期427-436,共10页
Nonlinear interactions among incident wave, tank-sloshing and floating body coupling motion are investigated. The fully nonlinear sloshing and body-surface nonlinear free surface hydrodynamics is simulated using a Non... Nonlinear interactions among incident wave, tank-sloshing and floating body coupling motion are investigated. The fully nonlinear sloshing and body-surface nonlinear free surface hydrodynamics is simulated using a Non-Uniform Rational B-Spline (NURBS) higher-order panel method in time domain based on the potential theory. A robust and stable improved iterative procedure (Yan and Ma, 2007) for floating bodies is used for calculating the time derivative of velocity potential and floating body motion. An energy dissipation condition based on linear theory adopted by Huang (2011) is developed to consider flow viscosity effects of sloshing flow in nonlinear model. A two-dimensional tank model test was performed to identify its validity. The present nonlinear coupling sway motion results are subsequently compared with the corresponding Rognebakke and Faltinsen (2003)'s experimental results, showing fair agreement. Thus, the numerical approach presented in this paper is expected to be very efficient and realistic in evaluating the coupling effects of nonlinear sloshing and body motion. 展开更多
关键词 NONLINEAR tank-sloshing coupling motion energy dissipation
下载PDF
The Nonlinear Bifurcation and Chaos of Coupled Heave and Pitch Motions of a Truss Spar Platform 被引量:3
10
作者 HUANG Lei LIU Liqin +1 位作者 LIU Chunyuan TANG Yougang 《Journal of Ocean University of China》 SCIE CAS 2015年第5期795-802,共8页
This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch mode... This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch modes, the coupled heave and pitch motion equations of the spar platform hull were established in the regular waves. In order to analyze the nonlinear motions of the platform, three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs were constructed, the Poincare maps and the power spectrums of the platform response were calculated. It was found that the platform motions are sensitive to wave fre- quency. With changing wave frequency, the platform undergoes complicated nonlinear motions, including 1/2 sub-harmonic motion, quasi-periodic motion and chaotic motion. When the wave frequency approaches the natural frequency of the heave mode of the platform, the platform moves with quasi-periodic motion and chaotic motional temately. For a certain range of wave frequencies, the platform moves with totally chaotic motion. The range of wave frequencies which leads to chaotic motion of the platform increases with increasing wave height. The three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs reveal the nonlinear motions of the spar platform under different wave conditions. 展开更多
关键词 truss spar platform coupled heave and pitch quasi-periodic motion chaotic motion 1/2 sub-harmonic motion maximum Lyapunov exponent bifurcation graph
下载PDF
Charge Couple Device-Based Systemfor3-di mensional Real Ti me Positioning on the Assessment of Segmental Range of Motion of Lumbar Spine 被引量:1
11
作者 赵平 陈立君 +3 位作者 管晶 潘丽 丁辉 丁海署 《Chinese Journal of Integrated Traditional and Western Medicine》 2005年第4期272-278,共7页
Objective: To observe the tested results of the segmental range of motion (ROM) of lumbar spine by charge couple device (CCD)-based system for 3-dimensional real-time positioning (CCD system), and to analyze it... Objective: To observe the tested results of the segmental range of motion (ROM) of lumbar spine by charge couple device (CCD)-based system for 3-dimensional real-time positioning (CCD system), and to analyze its clinical significance. Methods: Seven patients with lumbar joint dysfunction and 8 healthy subjects were tested twice by the CCD-based system with an interval of 10 min. Results: The ROM of the patients was obviously lesser than that of the healthy subjects. The measuring data of segmental ROM of lumbar spine by CCD system is correlated significantly to the same data checked later on the same subjects in every direction of the movements. The differences between two checks are usually less than 1 degree. Conclusion: Specially designed CCD based system for 3-dimensional real-time positioning could objectively reflect the segmental ROM of lumbar spine. The system would be of great clinical significance in the assessment of the biomechanical dysfunction of lumbar spine and the effect of the treatment applied. 展开更多
关键词 charge couple device camera lumbar spine RADIOLOGY segmental range of motion
下载PDF
Research on Coupling Transfer Characteristics of Vibration Energy of Free Piston Linear Generator 被引量:1
12
作者 Jingyi Tian Huihua Feng +1 位作者 Yifan Chen Shuochun Wang 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期556-567,共12页
In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(... In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG. 展开更多
关键词 free piston linear generator(FPLG) coupled motion of dual-piston vibration energy transfer mechanism analysis of influencing factors
下载PDF
Sloshing-Coupled Ship Motion Algorithm for Estimation of Slosh-Induced Pressures 被引量:1
13
作者 Jai Ram Saripilli Debabrata 《Journal of Marine Science and Application》 CSCD 2018年第3期312-329,共18页
The effect of coupling between sloshing and ship motions in the evaluation of slosh-induced interior pressures is studied. The coupling between sloshing loads and ship motions is modelled through a hybrid algorithm wh... The effect of coupling between sloshing and ship motions in the evaluation of slosh-induced interior pressures is studied. The coupling between sloshing loads and ship motions is modelled through a hybrid algorithm which combines a potential flow solution based on transient Green function for the external ship hydrodynamics with a viscous flow solution based on a multiphase interface capturing volume of fluid(VOF) technique for the interior sloshing motion. The coupled algorithm accounts for full nonlinear slosh forces while the external forces on the hull are determined through a blended scheme of linear radiationdiffraction with nonlinear Froude-Krylov and restoring forces. Consideration of this level of nonlinearities in ship motions is found to have non-negligible effects on the slosh-coupled responses and slosh-induced loads. A scheme is devised to evaluate the statistical measure of the pressures through long-duration simulation studies in extreme irregular waves. It is found that coupling significantly influences the tank interior pressures, and the differences in the pressures between coupled and uncoupled cases can be as much as 100% or more. To determine the RAO over the frequency range needed for the simulation studies in irregular waves, two alternative schemes are proposed, both of which require far less computational time compared to the conventional method of finding RAO at each frequency, and the merits of these are discussed. 展开更多
关键词 Slosh-coupled ship motionS SLOSHING SEAKEEPING Transient Green's function Computational fluid dynamics
下载PDF
THE COUPLING DYNAMICAL MODELING THEORY OF FLEXIBLE MULTIBODY SYSTEM
14
作者 Jiang, LZ Hong, JZ 《Acta Mechanica Solida Sinica》 SCIE EI 1999年第4期365-372,共8页
Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library... Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library' and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams. 展开更多
关键词 coupling displacement coupling dynamical modeling theory large overall motion single direction recursive formulation flexible multibody system
下载PDF
THE COUPLE MOTION BETWEEN VESSEL WALL AN DBLOOD IN THE ENTRANCE REGION OF A TAPERED VESSEL
15
作者 岑人经 秦婵 谭哲东 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第1期17-25,共9页
A problem of couple motion between vessel wall and blood in the entrance regionof a tapered vessel is considered in this paper A mathematical model of co-coupleaction is formed for both motion of vessel wall and blood... A problem of couple motion between vessel wall and blood in the entrance regionof a tapered vessel is considered in this paper A mathematical model of co-coupleaction is formed for both motion of vessel wall and blood flow in the entrance regance regionof elastic vessel with tapered angle. Under the situation that the relative boundary conditions are satisfied a.set of velocity distribution formula. pressure distributionformula for the blood flow in a tapered elastic vessel are derived. Some importantconclusions are obtained. 展开更多
关键词 vessel wall blood flow couple motion tapered angle
下载PDF
An analysis on a rigid-flexible coupling system of an oscillating massand a rotating disk
16
作者 Jian Liu Kai Zhang Zhanfang Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第5期341-348,共8页
A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffne... A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffness,the theorems of linear momentum and angular momentum are applied to the mass-rod-disk system based on the kinematic description of the system.With respect to two deflections of the mass and one angular velocity of the system,a group of nonlinear differential equations are established where the tangential inertial force,centrifugal force,Coriolis force as well as the moments of additional inertial forces take important effects on the dynamic response.For the sake of description,these three types of inertial forces mentioned before are referred to as additional inertial forces in this paper.The horizontal deflections of the mass and the angular velocity of the disk rotating about a fixed-axis are numerically solved for the prescribed external torque.The oscillating trajectory of the mass is deeply influenced by the additional inertial forces,meanwhile the dynamic fluctuations of the angular velocity and rotary inertia of the system are strongly affected by the mass oscillation. 展开更多
关键词 Rigid-flexible coupling Additional inertial forces Nonlinear differential equation motion trajectory
下载PDF
Experimental Study on Coupled Motions of Mother Ship Launching and Recovering of Human-Occupied Vehicle in Regular Waves
17
作者 Yunsai Chen Liang Ma +1 位作者 Wenyang Duan Peng Liu 《Journal of Marine Science and Application》 CSCD 2020年第1期53-63,共11页
The launching and recovery process of a human-occupied vehicle(HOV)faces more complex wave effects than other types of submersible operations.However,due to the nonlinearity between the HOV and its mother ship,difficu... The launching and recovery process of a human-occupied vehicle(HOV)faces more complex wave effects than other types of submersible operations.However,due to the nonlinearity between the HOV and its mother ship,difficulties occur in theoretically simulating their coupled motion and hydrodynamics.The coupled motion responses and the load under different regular wave conditions are investigated experimentally in this study.The optimized design of the experimental scheme simulated the launching and recovery process of the mother ship and HOV in regular waves.The attitude sensor performed synchronous real-time measurement of the coupled motion between the mother ship and HOV as well as obtained the load data on the coupled motion under different cable lengths.The results show that models in heading waves mainly lead to the vertical motion of the hoisting point.In beam waves,the transverse and vertical motions of the hoisting point occur in a certain frequency of waves.Under the heading and beam wave conditions,the longer the hoisting cable is,the greater the movement amplitude of the submersible is.Moreover,compared with the condition of the beam waves,the hoisting submersible has less influence on the mother ship under the condition of the heading waves.The findings provide theoretical support for the design optimization of the launching and recovery operation. 展开更多
关键词 Human-occupied vehicle Experimental study Launch and recovery coupled motion response Mother ship Regular wave
下载PDF
Seismic response analysis of a reinforced concrete continuous bridge considering coupling pounding-friction effect
18
作者 Lin Yuanzheng Zong Zhouhong +1 位作者 Li Yale Wang Liqi 《Journal of Southeast University(English Edition)》 EI CAS 2018年第3期340-348,共9页
To evaluate the coupling pounding-friction effect between bridge girders and retainers and its influence on bridge seismic response, a reinforced concrete (RC) continuous bridge is selected as the research object. T... To evaluate the coupling pounding-friction effect between bridge girders and retainers and its influence on bridge seismic response, a reinforced concrete (RC) continuous bridge is selected as the research object. Three bridge finite element (FE) models were built using OpenSees, in which the longitudinal and transverse pounding elements, as well as the transverse failure element of bearings were introduced. Based on this, tire seismic response analysis considering the coupling pounding-friction effect was conducted for the continuous bridge subjected to bi-directional ground motions. Furthermore, the influential parameters were analyzed. The analysis results indicate that the coupling pounding-friction effect can alter the internal force distribution of the bridge structure and generate additional torsional force to bridge columns. The friction coefficient and longitudinal pounding gap size are two important factors. The appropriate friction coefficient and longitudinal pounding gap size can significantly reduce seismic response of girders, and effectively transfer part of the girder inertia force from the fixed columns to the sliding columns, which can reduce the seismic demands of the fixed columns and improve the seismic performance of continuous bridge structures. 展开更多
关键词 coupling pounding-friction effect reinforcedconcrete continuous bridge seismic response analysis bi-directional ground motions OPENSEES
下载PDF
Dynamic Positioning Control of Surge−Pitch Coupled Motion for Small-Waterplane-Area Marine Structures
19
作者 HE Hua-cheng XU Sheng-wen +1 位作者 WANG Lei WANG Xue-feng 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期598-608,共11页
For general dynamic positioning systems,controllers are mainly based on the feedback of motions only in the horizontal plane.However,for marine structures with a small water plane area and low metacentric height,undes... For general dynamic positioning systems,controllers are mainly based on the feedback of motions only in the horizontal plane.However,for marine structures with a small water plane area and low metacentric height,undesirable surge and pitch oscillations may be induced by the thruster actions.In this paper,three control laws are investigated to suppress the induced pitch motion by adding pitch rate,pitch angle or pitch acceleration into the feedback control loop.Extensive numerical simulations are conducted with a semi-submersible platform for each control law.The influences of additional terms on surge−pitch coupled motions are analyzed in both frequency and time domain.The mechanical constraints of the thrust allocation and the frequency characters of external forces are simultaneously considered.It is concluded that adding pitch angle or pitch acceleration into the feedback loop changes the natural frequency in pitch,and its performance is highly dependent on the frequency distribution of external forces,while adding pitch rate into the feedback loop is always effective in mitigating surge−pitch coupled motions. 展开更多
关键词 surge−pitch coupled motion control small-waterplane-area marine structures actuation constraints frequency and time domain analysis
下载PDF
Modelling erosion of a single rock block using a coupled CFD-DEM approach
20
作者 Penghua Teng Fredrik Johansson J.Gunnar I.Hellström 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2375-2387,共13页
Rock block removal is the prevalent physical mechanism for rock erosion and could affect the stability of dam foundations and spillways.Despite this,understanding of block removal is still inadequate because of the co... Rock block removal is the prevalent physical mechanism for rock erosion and could affect the stability of dam foundations and spillways.Despite this,understanding of block removal is still inadequate because of the complex interactions among block characteristics,hydraulic forces,and erosive processes acting on the block.Herein,based on a previously conducted physical experiment of erosion of a single rock block,the removal processes of two different protruding blocks are represented by a coupled computational fluid dynamics-discrete element model(CFD-DEM)approach under varied flow conditions.Additionally,the blocks could be rotated with respect to the flow direction to consider the effect of the discontinuity orientation on the block removal process.Simulation results visualize the entire block removal process.The simulations reproduce the effects of the discontinuity orientation on the critical flow velocity inducing block incipient motion and the trajectory of the block motion observed in the physical experiments.The numerical results present a similar tendency of the critical velocities at different discontinuity orientations but have slightly lower values.The trajectory of the block in the simulations fits well with the experimental measurements.The relationship between the dimensionless critical shear stress and discontinuity orientation observed from the simulations shows that the effect of block protrusion becomes more dominant on the block incipient motion with the increase of relative protrusion height.To our knowledge,this present study is the first attempt to use the coupled finite volume method(FVM)-DEM approach for modelling the interaction behavior between the block and the flowing water so that the block removal process can be reproduced and analyzed. 展开更多
关键词 Rock erosion Block removal Incipient motion coupled CFD-DEM Critical shear stress
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部