This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general he...This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.展开更多
Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass re...Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass relationships. While, many relative studies were based on Markov chain, not MRF, and using Markov chain model for 3D reservoir stochastic simulation has always been the difficulty in reservoir stochastic simulation. MRF was proposed to simulate type variables(for example lithofacies) in this work. Firstly, a Gibbs distribution was proposed to characterize reservoir heterogeneity for building 3-D(three-dimensional) MRF. Secondly, maximum likelihood approaches of model parameters on well data and training image were considered. Compared with the simulation results of MC(Markov chain), the MRF can better reflect the spatial distribution characteristics of sand body.展开更多
A novel image auto-annotation method is presented based on probabilistic latent semantic analysis(PLSA) model and multiple Markov random fields(MRF).A PLSA model with asymmetric modalities is first constructed to esti...A novel image auto-annotation method is presented based on probabilistic latent semantic analysis(PLSA) model and multiple Markov random fields(MRF).A PLSA model with asymmetric modalities is first constructed to estimate the joint probability between images and semantic concepts,then a subgraph is extracted served as the corresponding structure of Markov random fields and inference over it is performed by the iterative conditional modes so as to capture the final annotation for the image.The novelty of our method mainly lies in two aspects:exploiting PLSA to estimate the joint probability between images and semantic concepts as well as multiple MRF to further explore the semantic context among keywords for accurate image annotation.To demonstrate the effectiveness of this approach,an experiment on the Corel5 k dataset is conducted and its results are compared favorably with the current state-of-the-art approaches.展开更多
This paper presents an approach for fully automatic segmentation of MS lesions in fluid attenuated inversion recovery (FLAIR) Magnetic Resonance (MR) images. The proposed method estimates a gaussian mixture model with...This paper presents an approach for fully automatic segmentation of MS lesions in fluid attenuated inversion recovery (FLAIR) Magnetic Resonance (MR) images. The proposed method estimates a gaussian mixture model with three kernels as cerebrospinal fluid (CSF), normal tissue and Multiple Sclerosis lesions. To estimate this model, an automatic Entropy based EM algorithm is used to find the best estimated Model. Then, Markov random field (MRF) model and EM algorithm are utilized to obtain and upgrade the class conditional probability density function and the apriori probability of each class. After estimation of Model parameters and apriori probability, brain tissues are classified using bayesian classification. To evaluate the result of the proposed method, similarity criteria of different slices related to 20 MS patients are calculated and compared with other methods which include manual segmentation. Also, volume of segmented lesions are computed and compared with gold standard using correlation coefficient. The proposed method has better performance in comparison with previous works which are reported here.展开更多
This paper models the complex simultaneous localization and mapping(SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models al...This paper models the complex simultaneous localization and mapping(SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models allow to incorporate: any motion model; any observation model regardless of the type of sensor being chosen; prior information of the map through a map model; maps of diverse natures; sensor fusion weighted according to the accuracy. On the other hand, the iterated conditional modes algorithm is a probabilistic optimizer widely used for image processing which has not yet been used to solve the SLAM problem. This iterative solver has theoretical convergence regardless of the Markov random field chosen to model. Its initialization can be performed on-line and improved by parallel iterations whenever deemed appropriate. It can be used as a post-processing methodology if it is initialized with estimates obtained from another SLAM solver. The applied methodology can be easily implemented in other versions of the SLAM problem, such as the multi-robot version or the SLAM with dynamic environment. Simulations and real experiments show the flexibility and the excellent results of this proposal.展开更多
One of the classical optimization models for image segmentation is the well known Markov Random Fields(MRF)model.This model is a discrete optimization problem,which is shown here to formulate many continuous models us...One of the classical optimization models for image segmentation is the well known Markov Random Fields(MRF)model.This model is a discrete optimization problem,which is shown here to formulate many continuous models used in image segmentation.In spite of the presence of MRF in the literature,the dominant perception has been that the model is not effective for image segmentation.We show here that the reason for the non-effectiveness is due to the lack of access to the optimal solution.Instead of solving optimally,heuristics have been engaged.Those heuristic methods cannot guarantee the quality of the solution nor the running time of the algorithm.Worse still,heuristics do not link directly the input functions and parameters to the output thus obscuring what would be ideal choices of parameters and functions which are to be selected by users in each particular application context.We describe here how MRF can model and solve efficiently several known continuous models for image segmentation and describe briefly a very efficient polynomial time algorithm,which is provably fastest possible,to solve optimally the MRF problem.The MRF algorithm is enhanced here compared to the algorithm in Hochbaum(2001)by allowing the set of assigned labels to be any discrete set.Other enhancements include dynamic features that permit adjustments to the input parameters and solves optimally for these changes with minimal computation time.Several new theoretical results on the properties of the algorithm are proved here and are demonstrated for images in the context of medical and biological imaging.An interactive implementation tool for MRF is described,and its performance and flexibility in practice are demonstrated via computational experiments.We conclude that many continuous models common in image segmentation have discrete analogs to various special cases of MRF and as such are solved optimally and efficiently,rather than with the use of continuous techniques,such as PDE methods,that restrict the type of functions used and furthermore,can only guarantee convergence to a local minimum.展开更多
Genes associated with similar diseases are often functionally related.This principle is largely supported by many biological data sources,such as disease phenotype similarities,protein complexes,protein-protein intera...Genes associated with similar diseases are often functionally related.This principle is largely supported by many biological data sources,such as disease phenotype similarities,protein complexes,protein-protein interactions,pathways and gene expression profiles.Integrating multiple types of biological data is an effective method to identify disease genes for many genetic diseases.To capture the gene-disease associations based on biological networks,a kernel-based Markov random field(MRF)method is proposed by combining graph kernels and the MRF method.In the proposed method,three kinds of kernels are employed to describe the overall relationships of vertices in five biological networks,respectively,and a novel weighted MRF method is developed to integrate those data.In addition,an improved Gibbs sampling procedure and a novel parameter estimation method are proposed to generate predictions from the kernel-based MRF method.Numerical experiments are carried out by integrating known gene-disease associations,protein complexes,protein-protein interactions,pathways and gene expression profiles.The proposed kernel-based MRF method is evaluated by the leave-one-out cross validation paradigm,achieving an AUC score of 0.771 when integrating all those biological data in our experiments,which indicates that our proposed method is very promising compared with many existing methods.展开更多
Economic shale gas production requires hydraulic fracture stimulation to increase the formation permeability. Hydraulic fracturing strongly depends on geomechanical parameters such as Young's modulus and Poisson's r...Economic shale gas production requires hydraulic fracture stimulation to increase the formation permeability. Hydraulic fracturing strongly depends on geomechanical parameters such as Young's modulus and Poisson's ratio. Fracture-prone sweet spots can be predicted by prestack inversion, which is an ill-posed problem; thus, regularization is needed to obtain unique and stable solutions. To characterize gas-bearing shale sedimentary bodies, elastic parameter variations are regarded as an anisotropic Markov random field. Bayesian statistics are adopted for transforming prestack inversion to the maximum posterior probability. Two energy functions for the lateral and vertical directions are used to describe the distribution, and the expectation-maximization algorithm is used to estimate the hyperparameters of the prior probability of elastic parameters. Finally, the inversion yields clear geological boundaries, high vertical resolution, and reasonable lateral continuity using the conjugate gradient method to minimize the objective function. Antinoise and imaging ability of the method were tested using synthetic and real data.展开更多
Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for S...Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.展开更多
As one of the most simple and effective single image dehazing methods, the dark channel prior(DCP) algorithm has been widely applied. However, the algorithm does not work for pixels similar to airlight(e.g., snowy gro...As one of the most simple and effective single image dehazing methods, the dark channel prior(DCP) algorithm has been widely applied. However, the algorithm does not work for pixels similar to airlight(e.g., snowy ground or a white wall), resulting in underestimation of the transmittance of some local scenes. To address that problem, we propose an image dehazing method by incorporating Markov random field(MRF) with the DCP. The DCP explicitly represents the input image observation in the MRF model obtained by the transmittance map. The key idea is that the sparsely distributed wrongly estimated transmittance can be corrected by properly characterizing the spatial dependencies between the neighboring pixels of the transmittances that are well estimated and those that are wrongly estimated. To that purpose, the energy function of the MRF model is designed. The estimation of the initial transmittance map is pixel-based using the DCP, and the segmentation on the transmittance map is employed to separate the foreground and background, thereby avoiding the block effect and artifacts at the depth discontinuity. Given the limited number of labels obtained by clustering, the smoothing term in the MRF model can properly smooth the transmittance map without an extra refinement filter. Experimental results obtained by using terrestrial and underwater images are given.展开更多
Hotspot topic trends can be captured by analyzing user attributes and historical behavior in social network. In this paper, we propose a user participation behavior prediction model for social hotspots, based on user ...Hotspot topic trends can be captured by analyzing user attributes and historical behavior in social network. In this paper, we propose a user participation behavior prediction model for social hotspots, based on user behavior and relationship data, to predict user participation behavior and topic development trends. Firstly, for the complex factors of user behavior, three dynamic influence factor functions are defined, including individual, peer and community influence. These functions take timeliness into account using a time discretization method. Secondly, to determine laws of individual behavior and group behavior within a social topic, a hotspot user participation behavior prediction model is proposed and associated with the basic concepts of randora field and Markov property in information diffusion. The experimental results show that the model can not only dynamically predict the individual behavior, but also grasp the development trends of topics.展开更多
Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values chang...Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.展开更多
Compressing encrypted images remains a challenge.As illustrated in our previous work on compression of encrypted binary images,it is preferable to exploit statistical characteristics at the receiver.Through this line,...Compressing encrypted images remains a challenge.As illustrated in our previous work on compression of encrypted binary images,it is preferable to exploit statistical characteristics at the receiver.Through this line,we characterize statistical correlations between adjacent bitplanes of a gray image with the Markov random field(MRF),represent it with a factor graph,and integrate the constructed MRF factor graph in that for binary image reconstruction,which gives rise to a joint factor graph for gray images reconstruction(JFGIR).By exploiting the JFGIR at the receiver to facilitate the reconstruction of the original bitplanes and deriving theoretically the sum-product algorithm(SPA)adapted to the JFGIR,a novel MRF-based encryption-then-compression(ETC)scheme is thus proposed.After preferable universal parameters of the MRF between adjacent bitplanes are sought via a numerical manner,extensive experimental simulations are then carried out to show that the proposed scheme successfully compresses the first 3 and 4 most significant bitplanes(MSBs)for most test gray images and the others with a large portion of smooth area,respectively.Thus,the proposed scheme achieves significant improvement against the state-of-the-art leveraging the 2-D Markov source model at the receiver and is comparable or somewhat inferior to that using the resolution-progressive strategy in recovery.展开更多
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand...To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.展开更多
Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary...Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods.展开更多
In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the bas...In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the basis of Markov Random Field (MRF) modeling. This paper first defined algorithm model and derived the core factors affecting the performance of the algorithm, and then, the solving of this algorithm was obtained by the use of Belief Propagation (BP) algorithm and Iterated Conditional Modes (ICM) algorithm. Finally, experiments indicate that this algorithm for the cloud image detection has higher average accuracy rate which is about 98.76% and the average result can also reach 96.92% for different type of image noise.展开更多
In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every ...In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms.展开更多
A real-time tracking system for the fast moving object on the complex background is proposed.The Markov random filed(MRF)model based background subtraction algorithm is used to detect the changing pixels and track t...A real-time tracking system for the fast moving object on the complex background is proposed.The Markov random filed(MRF)model based background subtraction algorithm is used to detect the changing pixels and track the moving object.The prior probability of the segmentation mask is modeled by using MRF,and the object tracking task is translated into the maximum a-posterior(MAP)problem.Experimental results show that the method is efficient at both offline and online moving objects on simple and complex background.展开更多
To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring b...To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring blocks. All the blocks' motion vectors are estimated, and the noise motion vectors are detected and adjusted to decrease the error of motion vector estimation. Then, by moving the blocks based on the adjusted motion vectors, the vehicle is tracked. Aiming at the occlusion between vehicles, a Markov random field is established to describe the relationship between the blocks in the blocked regions. The neighborhood of blocks is defined using the Euclidean distance. An energy function is defined based on the blocks' histograms and optimized by the simulated annealing algorithm to segment the occlusion region. Experimental results demonstrate that the proposed algorithm can track vehicles under occlusion accurately.展开更多
A new stereo matching scheme from image pairs based on graph cuts is given,which can solve the problem of large color differences as the result of fusing matching results of graph cuts from different color spaces.This...A new stereo matching scheme from image pairs based on graph cuts is given,which can solve the problem of large color differences as the result of fusing matching results of graph cuts from different color spaces.This scheme builds normalized histogram and reference histogram from matching results,and uses clustering algorithm to process the two histograms.Region histogram statistical method is adopted to retrieve depth data to achieve final matching results.Regular stereo matching library is used to verify this scheme,and experiments reported in this paper support availability of this method for automatic image processing.This scheme renounces the step of manual selection for adaptive color space and can obtain stable matching results.The whole procedure can be executed automatically and improve the integration level of image analysis process.展开更多
文摘This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.
基金Project(2011ZX05002-005-006)supported by the National "Twelveth Five Year" Science and Technology Major Research Program,China
文摘Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass relationships. While, many relative studies were based on Markov chain, not MRF, and using Markov chain model for 3D reservoir stochastic simulation has always been the difficulty in reservoir stochastic simulation. MRF was proposed to simulate type variables(for example lithofacies) in this work. Firstly, a Gibbs distribution was proposed to characterize reservoir heterogeneity for building 3-D(three-dimensional) MRF. Secondly, maximum likelihood approaches of model parameters on well data and training image were considered. Compared with the simulation results of MC(Markov chain), the MRF can better reflect the spatial distribution characteristics of sand body.
基金Supported by the National Basic Research Priorities Program(No.2013CB329502)the National High-tech R&D Program of China(No.2012AA011003)+1 种基金National Natural Science Foundation of China(No.61035003,61072085,60933004,60903141)the National Scienceand Technology Support Program of China(No.2012BA107B02)
文摘A novel image auto-annotation method is presented based on probabilistic latent semantic analysis(PLSA) model and multiple Markov random fields(MRF).A PLSA model with asymmetric modalities is first constructed to estimate the joint probability between images and semantic concepts,then a subgraph is extracted served as the corresponding structure of Markov random fields and inference over it is performed by the iterative conditional modes so as to capture the final annotation for the image.The novelty of our method mainly lies in two aspects:exploiting PLSA to estimate the joint probability between images and semantic concepts as well as multiple MRF to further explore the semantic context among keywords for accurate image annotation.To demonstrate the effectiveness of this approach,an experiment on the Corel5 k dataset is conducted and its results are compared favorably with the current state-of-the-art approaches.
文摘This paper presents an approach for fully automatic segmentation of MS lesions in fluid attenuated inversion recovery (FLAIR) Magnetic Resonance (MR) images. The proposed method estimates a gaussian mixture model with three kernels as cerebrospinal fluid (CSF), normal tissue and Multiple Sclerosis lesions. To estimate this model, an automatic Entropy based EM algorithm is used to find the best estimated Model. Then, Markov random field (MRF) model and EM algorithm are utilized to obtain and upgrade the class conditional probability density function and the apriori probability of each class. After estimation of Model parameters and apriori probability, brain tissues are classified using bayesian classification. To evaluate the result of the proposed method, similarity criteria of different slices related to 20 MS patients are calculated and compared with other methods which include manual segmentation. Also, volume of segmented lesions are computed and compared with gold standard using correlation coefficient. The proposed method has better performance in comparison with previous works which are reported here.
基金supported by the National Council for Scientific and Technological Research(CONICET)the National University of San Juan(UNSJ)
文摘This paper models the complex simultaneous localization and mapping(SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models allow to incorporate: any motion model; any observation model regardless of the type of sensor being chosen; prior information of the map through a map model; maps of diverse natures; sensor fusion weighted according to the accuracy. On the other hand, the iterated conditional modes algorithm is a probabilistic optimizer widely used for image processing which has not yet been used to solve the SLAM problem. This iterative solver has theoretical convergence regardless of the Markov random field chosen to model. Its initialization can be performed on-line and improved by parallel iterations whenever deemed appropriate. It can be used as a post-processing methodology if it is initialized with estimates obtained from another SLAM solver. The applied methodology can be easily implemented in other versions of the SLAM problem, such as the multi-robot version or the SLAM with dynamic environment. Simulations and real experiments show the flexibility and the excellent results of this proposal.
基金This research was supported in part by NSF awards No.CMMI-1200592 and CBET-0736232.
文摘One of the classical optimization models for image segmentation is the well known Markov Random Fields(MRF)model.This model is a discrete optimization problem,which is shown here to formulate many continuous models used in image segmentation.In spite of the presence of MRF in the literature,the dominant perception has been that the model is not effective for image segmentation.We show here that the reason for the non-effectiveness is due to the lack of access to the optimal solution.Instead of solving optimally,heuristics have been engaged.Those heuristic methods cannot guarantee the quality of the solution nor the running time of the algorithm.Worse still,heuristics do not link directly the input functions and parameters to the output thus obscuring what would be ideal choices of parameters and functions which are to be selected by users in each particular application context.We describe here how MRF can model and solve efficiently several known continuous models for image segmentation and describe briefly a very efficient polynomial time algorithm,which is provably fastest possible,to solve optimally the MRF problem.The MRF algorithm is enhanced here compared to the algorithm in Hochbaum(2001)by allowing the set of assigned labels to be any discrete set.Other enhancements include dynamic features that permit adjustments to the input parameters and solves optimally for these changes with minimal computation time.Several new theoretical results on the properties of the algorithm are proved here and are demonstrated for images in the context of medical and biological imaging.An interactive implementation tool for MRF is described,and its performance and flexibility in practice are demonstrated via computational experiments.We conclude that many continuous models common in image segmentation have discrete analogs to various special cases of MRF and as such are solved optimally and efficiently,rather than with the use of continuous techniques,such as PDE methods,that restrict the type of functions used and furthermore,can only guarantee convergence to a local minimum.
基金supported by the Natural Sciences and Engineering Research Council of CanadaNational Natural Science Foundation of China(61428209,61232001)
文摘Genes associated with similar diseases are often functionally related.This principle is largely supported by many biological data sources,such as disease phenotype similarities,protein complexes,protein-protein interactions,pathways and gene expression profiles.Integrating multiple types of biological data is an effective method to identify disease genes for many genetic diseases.To capture the gene-disease associations based on biological networks,a kernel-based Markov random field(MRF)method is proposed by combining graph kernels and the MRF method.In the proposed method,three kinds of kernels are employed to describe the overall relationships of vertices in five biological networks,respectively,and a novel weighted MRF method is developed to integrate those data.In addition,an improved Gibbs sampling procedure and a novel parameter estimation method are proposed to generate predictions from the kernel-based MRF method.Numerical experiments are carried out by integrating known gene-disease associations,protein complexes,protein-protein interactions,pathways and gene expression profiles.The proposed kernel-based MRF method is evaluated by the leave-one-out cross validation paradigm,achieving an AUC score of 0.771 when integrating all those biological data in our experiments,which indicates that our proposed method is very promising compared with many existing methods.
基金supported by CNPC fundamental research project(No.2014E-3204)
文摘Economic shale gas production requires hydraulic fracture stimulation to increase the formation permeability. Hydraulic fracturing strongly depends on geomechanical parameters such as Young's modulus and Poisson's ratio. Fracture-prone sweet spots can be predicted by prestack inversion, which is an ill-posed problem; thus, regularization is needed to obtain unique and stable solutions. To characterize gas-bearing shale sedimentary bodies, elastic parameter variations are regarded as an anisotropic Markov random field. Bayesian statistics are adopted for transforming prestack inversion to the maximum posterior probability. Two energy functions for the lateral and vertical directions are used to describe the distribution, and the expectation-maximization algorithm is used to estimate the hyperparameters of the prior probability of elastic parameters. Finally, the inversion yields clear geological boundaries, high vertical resolution, and reasonable lateral continuity using the conjugate gradient method to minimize the objective function. Antinoise and imaging ability of the method were tested using synthetic and real data.
基金supported by the Specialized Research Found for the Doctoral Program of Higher Education (20070699013)the Natural Science Foundation of Shaanxi Province (2006F05)the Aeronautical Science Foundation (05I53076)
文摘Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (No.61571407)。
文摘As one of the most simple and effective single image dehazing methods, the dark channel prior(DCP) algorithm has been widely applied. However, the algorithm does not work for pixels similar to airlight(e.g., snowy ground or a white wall), resulting in underestimation of the transmittance of some local scenes. To address that problem, we propose an image dehazing method by incorporating Markov random field(MRF) with the DCP. The DCP explicitly represents the input image observation in the MRF model obtained by the transmittance map. The key idea is that the sparsely distributed wrongly estimated transmittance can be corrected by properly characterizing the spatial dependencies between the neighboring pixels of the transmittances that are well estimated and those that are wrongly estimated. To that purpose, the energy function of the MRF model is designed. The estimation of the initial transmittance map is pixel-based using the DCP, and the segmentation on the transmittance map is employed to separate the foreground and background, thereby avoiding the block effect and artifacts at the depth discontinuity. Given the limited number of labels obtained by clustering, the smoothing term in the MRF model can properly smooth the transmittance map without an extra refinement filter. Experimental results obtained by using terrestrial and underwater images are given.
基金supported by the National Key Basic Research Program(973 program)of China(No.2013CB329606)National Science Foundation of China(Grant No.61272400)+2 种基金Science and Technology Research Program of the Chongqing Municipal Education Committee(No.KJ1500425)Wen Feng Foundation of CQUPT(No.WF201403)Chongqing Graduate Research And Innovation Project(No.CYS14146)
文摘Hotspot topic trends can be captured by analyzing user attributes and historical behavior in social network. In this paper, we propose a user participation behavior prediction model for social hotspots, based on user behavior and relationship data, to predict user participation behavior and topic development trends. Firstly, for the complex factors of user behavior, three dynamic influence factor functions are defined, including individual, peer and community influence. These functions take timeliness into account using a time discretization method. Secondly, to determine laws of individual behavior and group behavior within a social topic, a hotspot user participation behavior prediction model is proposed and associated with the basic concepts of randora field and Markov property in information diffusion. The experimental results show that the model can not only dynamically predict the individual behavior, but also grasp the development trends of topics.
文摘Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.
基金This work is supported in part by the National Natural Science Foundation of China under contracts 61672242 and 61702199in part by China Spark Program under Grant 2015GA780002+1 种基金in part by The National Key Research and Development Program of China under Grant 2017YFD0701601in part by Natural Science Foundation of Guangdong Province under Grant 2015A030313413.
文摘Compressing encrypted images remains a challenge.As illustrated in our previous work on compression of encrypted binary images,it is preferable to exploit statistical characteristics at the receiver.Through this line,we characterize statistical correlations between adjacent bitplanes of a gray image with the Markov random field(MRF),represent it with a factor graph,and integrate the constructed MRF factor graph in that for binary image reconstruction,which gives rise to a joint factor graph for gray images reconstruction(JFGIR).By exploiting the JFGIR at the receiver to facilitate the reconstruction of the original bitplanes and deriving theoretically the sum-product algorithm(SPA)adapted to the JFGIR,a novel MRF-based encryption-then-compression(ETC)scheme is thus proposed.After preferable universal parameters of the MRF between adjacent bitplanes are sought via a numerical manner,extensive experimental simulations are then carried out to show that the proposed scheme successfully compresses the first 3 and 4 most significant bitplanes(MSBs)for most test gray images and the others with a large portion of smooth area,respectively.Thus,the proposed scheme achieves significant improvement against the state-of-the-art leveraging the 2-D Markov source model at the receiver and is comparable or somewhat inferior to that using the resolution-progressive strategy in recovery.
基金the National Natural Science Foundation of China(Grant No.11471004)the Key Research and Development Program of Shaanxi Province,China(Grant No.2018SF-251)。
文摘To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.
基金supported in part by the National Natural Science Foundation of China under Grants 61841103,61673164,and 61602397in part by the Natural Science Foundation of Hunan Provincial under Grants 2016JJ2041 and 2019JJ50106+1 种基金in part by the Key Project of Education Department of Hunan Provincial under Grant 18B385and in part by the Graduate Research Innovation Projects of Hunan Province under Grants CX2018B805 and CX2018B813.
文摘Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods.
基金Supported by the National Natural Science Foundation of China (No. 61172047)
文摘In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the basis of Markov Random Field (MRF) modeling. This paper first defined algorithm model and derived the core factors affecting the performance of the algorithm, and then, the solving of this algorithm was obtained by the use of Belief Propagation (BP) algorithm and Iterated Conditional Modes (ICM) algorithm. Finally, experiments indicate that this algorithm for the cloud image detection has higher average accuracy rate which is about 98.76% and the average result can also reach 96.92% for different type of image noise.
文摘In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms.
文摘A real-time tracking system for the fast moving object on the complex background is proposed.The Markov random filed(MRF)model based background subtraction algorithm is used to detect the changing pixels and track the moving object.The prior probability of the segmentation mask is modeled by using MRF,and the object tracking task is translated into the maximum a-posterior(MAP)problem.Experimental results show that the method is efficient at both offline and online moving objects on simple and complex background.
基金The National Natural Science Foundation of China(No.60972001,61374194)
文摘To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring blocks. All the blocks' motion vectors are estimated, and the noise motion vectors are detected and adjusted to decrease the error of motion vector estimation. Then, by moving the blocks based on the adjusted motion vectors, the vehicle is tracked. Aiming at the occlusion between vehicles, a Markov random field is established to describe the relationship between the blocks in the blocked regions. The neighborhood of blocks is defined using the Euclidean distance. An energy function is defined based on the blocks' histograms and optimized by the simulated annealing algorithm to segment the occlusion region. Experimental results demonstrate that the proposed algorithm can track vehicles under occlusion accurately.
基金Sponsored by"985"Second Procession Construction of Ministry of Education(3040012040101)
文摘A new stereo matching scheme from image pairs based on graph cuts is given,which can solve the problem of large color differences as the result of fusing matching results of graph cuts from different color spaces.This scheme builds normalized histogram and reference histogram from matching results,and uses clustering algorithm to process the two histograms.Region histogram statistical method is adopted to retrieve depth data to achieve final matching results.Regular stereo matching library is used to verify this scheme,and experiments reported in this paper support availability of this method for automatic image processing.This scheme renounces the step of manual selection for adaptive color space and can obtain stable matching results.The whole procedure can be executed automatically and improve the integration level of image analysis process.