This study demonstrates that beyond standard model (BSM) cosmic fundamental interactions—weak, strong, and electromagnetic forces—can be unified through a common basis of representation. This unification allows for ...This study demonstrates that beyond standard model (BSM) cosmic fundamental interactions—weak, strong, and electromagnetic forces—can be unified through a common basis of representation. This unification allows for the derivation of the fine structure constant with running points of α(t) ≈ 1/(136.9038) at high energy scales, based on electroweak interactions. Through the application of the Ising model, the running point of the elementary charge e at high energy scales is determined, and Coulomb’s law is actually derived from the Yukawa potential. Theoretically, based on S. Weinberg’s electroweak interaction theory, this study unifies the strong and electromagnetic forces by representing them with rYuka, and further advances the reconstruction of the SU(3)C×SU(1)L×U(1)EMframework on the basis of electroweak interaction concepts. In fact, the cosmic fundamental forces can interchange at the mass gap, defined as the Yukawa turning phase at rYuka ≃1.9404 fm, with the SU(3)Diag structural constant fijk on glueballs calculated, estimating a spectrum mass gap of ∆0 > 0.展开更多
Based on the principle of thermal conduction, three metal alloys (stainless steel, copper-tungsten and graphite) were chosen as the material of the high impulse current discharging switch. Experimental results indic...Based on the principle of thermal conduction, three metal alloys (stainless steel, copper-tungsten and graphite) were chosen as the material of the high impulse current discharging switch. Experimental results indicate that the mass loss and surface erosion morphology of the electrode are related with the electrode material (conductivity σ, melting point Tin, density p and thermal capacity c) and the impulse transferred charge (or energy) per impulse for the same total impulse transferred charge. The experimental results indicate that the mass loss of stainless steel, copper-tungsten and graphite are 380.10 μg/C, 118.10 μg/C and 81.90 μg/C respectively under the condition of a total impulse transferred charge of 525 C and a transferred charge per impulse of 10.5 C. Under the same impulse transferred charge, the mass loss of copper-tungsten(118.10 μg/C) with the transferred charge per impulse at 10.5 C is far larger than the mass loss (38.61μg/C) at a 1.48 C transferred charge per impulse. The electrode erosion mechanism under high energy impulse arcs is analyzed briefly and it is suggested that by selecting high conductive metal or metal alloy as the electrode material of a high energy impulse spark gap switch and setting high erosion resistance material at the top of the electrode, the mass loss of the electrode can be reduced and the life of the switch prolonged.展开更多
荷电细水雾可以有效地提高抑制瓦斯爆炸的效率。其中,雾滴的荷质比是细水雾抑爆效率的重要影响因素。利用网状目标法测试系统,通过改变荷电电压、电极间距、喷雾压力、环形电极的横截面积和材质,研究各种因素对水雾荷质比的影响规律。...荷电细水雾可以有效地提高抑制瓦斯爆炸的效率。其中,雾滴的荷质比是细水雾抑爆效率的重要影响因素。利用网状目标法测试系统,通过改变荷电电压、电极间距、喷雾压力、环形电极的横截面积和材质,研究各种因素对水雾荷质比的影响规律。结果表明:水雾荷质比随荷电电压的升高呈现线性增长关系,随电极间距或环形电极横截面积的增大而增大;喷雾压力增大,荷质比呈现增长趋势,但增长幅度不明显;水雾荷质比不受电极环材质影响。在实验条件下,当荷电电压为7 k V、电极间距为12 mm、电极横截面积为4 mm2,喷雾压力为1.4 MPa时,雾滴荷电效果最好,荷质比为0.539 7 m C/kg。展开更多
文摘This study demonstrates that beyond standard model (BSM) cosmic fundamental interactions—weak, strong, and electromagnetic forces—can be unified through a common basis of representation. This unification allows for the derivation of the fine structure constant with running points of α(t) ≈ 1/(136.9038) at high energy scales, based on electroweak interactions. Through the application of the Ising model, the running point of the elementary charge e at high energy scales is determined, and Coulomb’s law is actually derived from the Yukawa potential. Theoretically, based on S. Weinberg’s electroweak interaction theory, this study unifies the strong and electromagnetic forces by representing them with rYuka, and further advances the reconstruction of the SU(3)C×SU(1)L×U(1)EMframework on the basis of electroweak interaction concepts. In fact, the cosmic fundamental forces can interchange at the mass gap, defined as the Yukawa turning phase at rYuka ≃1.9404 fm, with the SU(3)Diag structural constant fijk on glueballs calculated, estimating a spectrum mass gap of ∆0 > 0.
文摘Based on the principle of thermal conduction, three metal alloys (stainless steel, copper-tungsten and graphite) were chosen as the material of the high impulse current discharging switch. Experimental results indicate that the mass loss and surface erosion morphology of the electrode are related with the electrode material (conductivity σ, melting point Tin, density p and thermal capacity c) and the impulse transferred charge (or energy) per impulse for the same total impulse transferred charge. The experimental results indicate that the mass loss of stainless steel, copper-tungsten and graphite are 380.10 μg/C, 118.10 μg/C and 81.90 μg/C respectively under the condition of a total impulse transferred charge of 525 C and a transferred charge per impulse of 10.5 C. Under the same impulse transferred charge, the mass loss of copper-tungsten(118.10 μg/C) with the transferred charge per impulse at 10.5 C is far larger than the mass loss (38.61μg/C) at a 1.48 C transferred charge per impulse. The electrode erosion mechanism under high energy impulse arcs is analyzed briefly and it is suggested that by selecting high conductive metal or metal alloy as the electrode material of a high energy impulse spark gap switch and setting high erosion resistance material at the top of the electrode, the mass loss of the electrode can be reduced and the life of the switch prolonged.
文摘荷电细水雾可以有效地提高抑制瓦斯爆炸的效率。其中,雾滴的荷质比是细水雾抑爆效率的重要影响因素。利用网状目标法测试系统,通过改变荷电电压、电极间距、喷雾压力、环形电极的横截面积和材质,研究各种因素对水雾荷质比的影响规律。结果表明:水雾荷质比随荷电电压的升高呈现线性增长关系,随电极间距或环形电极横截面积的增大而增大;喷雾压力增大,荷质比呈现增长趋势,但增长幅度不明显;水雾荷质比不受电极环材质影响。在实验条件下,当荷电电压为7 k V、电极间距为12 mm、电极横截面积为4 mm2,喷雾压力为1.4 MPa时,雾滴荷电效果最好,荷质比为0.539 7 m C/kg。