This paper further explores the estimating and expressing of dynamic balance constraints using statistical methods in GRAPES-3DVAR(Version GM). Unlike the single-level scheme which only considers the coupling between ...This paper further explores the estimating and expressing of dynamic balance constraints using statistical methods in GRAPES-3DVAR(Version GM). Unlike the single-level scheme which only considers the coupling between mass and wind at one level, the multi-level scheme considers the coupling between their vertical profiles and calculates the balanced mass field at each layer using the rotational wind at all model levels. A reformed ridge regression method is used in the new scheme to avoid the multicollinearity problem and reduce the noises caused by unbalanced mesoscale disturbances. The results of numerical experiments show that the new scheme can get more reasonable vertical mass field, reduce the magnitude of the adjustment by the initialization, and improve the potential temperature analysis performance. Furthermore, the results of forecast verification in January(winter) and July(summer) both confirm that the new scheme can significantly improve the temperature forecast accuracy and bring slight positive effects to the pressure and wind forecast.展开更多
The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of co...The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of concentrated-weight category freights,an improvement method is put forward to build freight towers and a greedy-construction algorithm is utilized based on heuristic information for the initial layout.Then a feasibility analysis is performed to judge if the balanced and unconcentrated loading constrains are reached.Through introducing optimization or adjustment methods,an overall optimal solution can be obtained.Experiments are conducted using data generated from real cases showing the effectiveness of our approach: volume utility ratio of 90.4% and load capacity utility ratio of 86.7% which is comparably even to the packing of the general freights.展开更多
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ...Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.展开更多
This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes ar...This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.展开更多
In practical optical networks, there is often the same number of wavelengths in a fiber. But if it is not carefully designed, there will be much difference in link load among different fibers, and unnecessary waveleng...In practical optical networks, there is often the same number of wavelengths in a fiber. But if it is not carefully designed, there will be much difference in link load among different fibers, and unnecessary wavelengths will be needed. This paper investigated this load balancing issues to minimize the wavelength requirements. Both Integer Linear Programming (ILP) and heuristic algorithms were presented to solve such a problem in WDM optical networks with or without wavelength continuity constraints.展开更多
Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and solutions may be extremely oscillatory due to measurement errors without any constraints on the coseismic slip distribution. I...Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and solutions may be extremely oscillatory due to measurement errors without any constraints on the coseismic slip distribution. In order to obtain stable solution for coseismic slip inversion, regularization method with smoothness-constrained was imposed. Trade-off parameter in regularized inversion, which balances the minimization of the data misfit and model roughness, should be a critical procedure to achieve both resolution and stability. Then, the active constraint balancing approach is adopted, in which the trade-off parameter is regarded as a spatial variable at each model parameter and automatically determined via the model resolution matrix and the spread function. Numerical experiments for a synthetical model indicate that regularized inversion using active constraint balancing approach can provides stable inversion results and have low sensitivity to the knowledge of the exact character of the Gaussian noise. Regularized inversion combined with active constraint balancing approach is conducted on the 2005 Nias earthquake. The released moment based on the estimated coseismic slip distribution is 9.91×1021 N·m, which is equivalent to a moment magnitude of 8.6 and almost identical to the value determined by USGS. The inversion results for synthetic coseismic uniform-slip model and the 2005 earthquake show that smoothness-constrained regularized inversion method combined with active constraint balancing approach is effective, and can be reasonable to reconstruct coseismic slip distribution on fault.展开更多
重构GRAPES(Global/Regional Assimilation and Prediction System)全球、区域一体化变分同化系统中的极小化控制变量,提升中、小尺度同化分析能力,为中国气象局业务区域数值预报系统CMA-MESO提供千米尺度适用的同化方案。新方案用纬向...重构GRAPES(Global/Regional Assimilation and Prediction System)全球、区域一体化变分同化系统中的极小化控制变量,提升中、小尺度同化分析能力,为中国气象局业务区域数值预报系统CMA-MESO提供千米尺度适用的同化方案。新方案用纬向风速(u)和经向风速(v)替代原有流函数和势函数作为新的风场控制变量,采用温度和地面气压(T,ps)替代原有非平衡无量纲气压作为新的质量场控制变量,同时不再考虑准地转平衡约束,而是采用连续方程弱约束保证分析平衡。背景误差参数统计和数值试验结果表明,采用重构后的极小化控制变量,观测信息传播更加局地,分析结构更加合理,避免了原方案在中、小尺度应用时存在的虚假相关问题。连续方程弱约束的引入,限制了同化分析中辐合、辐散的不合理增长,帮助新方案在分析更加局地的同时保证分析平衡。为期1个月的连续同化循环和预报试验结果表明,新方案可以减小风场和质量场分析误差,CMAMESO系统地面降水和10 m风场的预报评分显著提升。展开更多
基金China Special Fund for Meteorological Research in the Public Interest(GYHY201106008,GYHY201506003)China Meteorological Administration Special Fund for the Development of Numerical Weather Prediction(GRAPES)Research Innovation Program for College Graduates of Jiangsu Province(CXZZ13_0497)
文摘This paper further explores the estimating and expressing of dynamic balance constraints using statistical methods in GRAPES-3DVAR(Version GM). Unlike the single-level scheme which only considers the coupling between mass and wind at one level, the multi-level scheme considers the coupling between their vertical profiles and calculates the balanced mass field at each layer using the rotational wind at all model levels. A reformed ridge regression method is used in the new scheme to avoid the multicollinearity problem and reduce the noises caused by unbalanced mesoscale disturbances. The results of numerical experiments show that the new scheme can get more reasonable vertical mass field, reduce the magnitude of the adjustment by the initialization, and improve the potential temperature analysis performance. Furthermore, the results of forecast verification in January(winter) and July(summer) both confirm that the new scheme can significantly improve the temperature forecast accuracy and bring slight positive effects to the pressure and wind forecast.
基金Project(71371193)supported by the National Natural Science Foundation of ChinaProjects(2005K1001,2007K1005)supported by Guangzhou-Shenzhen Railway Company Limited,China
文摘The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of concentrated-weight category freights,an improvement method is put forward to build freight towers and a greedy-construction algorithm is utilized based on heuristic information for the initial layout.Then a feasibility analysis is performed to judge if the balanced and unconcentrated loading constrains are reached.Through introducing optimization or adjustment methods,an overall optimal solution can be obtained.Experiments are conducted using data generated from real cases showing the effectiveness of our approach: volume utility ratio of 90.4% and load capacity utility ratio of 86.7% which is comparably even to the packing of the general freights.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275366,50875190,51305311)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134219110002)
文摘Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.
基金Project(16B134)supported by Hunan Provincial Department of Education,China
文摘This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.
文摘In practical optical networks, there is often the same number of wavelengths in a fiber. But if it is not carefully designed, there will be much difference in link load among different fibers, and unnecessary wavelengths will be needed. This paper investigated this load balancing issues to minimize the wavelength requirements. Both Integer Linear Programming (ILP) and heuristic algorithms were presented to solve such a problem in WDM optical networks with or without wavelength continuity constraints.
基金Projects(41604111,41541036) supported by the National Natural Science Foundation of China
文摘Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and solutions may be extremely oscillatory due to measurement errors without any constraints on the coseismic slip distribution. In order to obtain stable solution for coseismic slip inversion, regularization method with smoothness-constrained was imposed. Trade-off parameter in regularized inversion, which balances the minimization of the data misfit and model roughness, should be a critical procedure to achieve both resolution and stability. Then, the active constraint balancing approach is adopted, in which the trade-off parameter is regarded as a spatial variable at each model parameter and automatically determined via the model resolution matrix and the spread function. Numerical experiments for a synthetical model indicate that regularized inversion using active constraint balancing approach can provides stable inversion results and have low sensitivity to the knowledge of the exact character of the Gaussian noise. Regularized inversion combined with active constraint balancing approach is conducted on the 2005 Nias earthquake. The released moment based on the estimated coseismic slip distribution is 9.91×1021 N·m, which is equivalent to a moment magnitude of 8.6 and almost identical to the value determined by USGS. The inversion results for synthetic coseismic uniform-slip model and the 2005 earthquake show that smoothness-constrained regularized inversion method combined with active constraint balancing approach is effective, and can be reasonable to reconstruct coseismic slip distribution on fault.