期刊文献+
共找到9,999篇文章
< 1 2 250 >
每页显示 20 50 100
Revisiting aluminum current collector in lithium-ion batteries:Corrosion and countermeasures
1
作者 Shanglin Yang Jinyan Zhong +1 位作者 Songmei Li Bin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期610-634,I0014,共26页
With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary m... With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary materials,such as current collector corrosion,should not be disregarded.Therefore,it is necessary to conduct a comprehensive review in this field.In this review,from the perspectives of electrochemistry and materials,we systematically summarize the corrosion behavior of aluminum cathode current collector and propose corresponding countermeasures.Firstly,the corrosion type is clarified based on the properties of passivation layers in different organic electrolyte components.Furthermore,a thoroughgoing analysis is presented to examine the impact of various factors on aluminum corrosion,including lithium salts,organic solvents,water impurities,and operating conditions.Subsequently,strategies for electrolyte and protection layer employed to suppress corrosion are discussed in detail.Lastly and most importantly,we provide insights and recommendations to prevent corrosion of current collectors,facilitate the development of advanced current collectors and the implementation of next-generation high-voltage stable LIBs. 展开更多
关键词 Lithium-ion battery Aluminum current collector corrosion Electrochemical performance ELECTROLYTE Protective layer
下载PDF
Advancements in enhancing corrosion protection of Mg alloys:A comprehensive review on the synergistic effects of combining inhibitors with PEO coating
2
作者 Arash Fattah-alhosseini Abdelhameed Fardosi +1 位作者 Minoo Karbasi Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期465-489,共25页
Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica... Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments. 展开更多
关键词 INHIBITOR Mg alloy Self-healing coating Plasma electrolytic oxidation(PEO) corrosion protection
下载PDF
Functionalized carbon dots for corrosion protection:Recent advances and future perspectives
3
作者 Li Zhao Jinke Wang +5 位作者 Kai Chen Jingzhi Yang Xin Guo Hongchang Qian Lingwei Ma Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2112-2133,共22页
Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterial... Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterials,which have been considered for corrosion protection applications in recent years due to their corrosion inhibition effect,fluorescence,low toxicity,facile chemical modification,and cost-effectiveness.This study provides a comprehensive overview of the synthesis,physical and chemical properties,and anticorrosion mechanisms of functionalized CDs.First,the corrosion inhibition performance of different types of CDs is introduced,followed by discussion on their application in the development of smart protective coatings with self-healing and/or self-reporting properties.The effective barrier formed by CDs in the coatings can inhibit the spread of local damage and achieve self-healing behavior.In addition,diverse functional groups on CDs can interact with Fe^(3+)and H^(+)ions generated during the corrosion process;this interaction changes their fluorescence,thereby demonstrating self-reporting behavior.Moreover,challenges and prospects for the development of CD-based corrosion protection systems are also presented. 展开更多
关键词 carbon dots corrosion protection corrosion inhibitors SELF-HEALING SELF-REPORTING
下载PDF
Recent progress in self-repairing coatings for corrosion protection on magnesium alloys and perspective of porous solids as novel carrier and barrier
4
作者 Yajie Yang Yufei Wang +5 位作者 Mei-Xuan Li Tianshuai Wang Dawei Wang Cheng Wang Min Zha Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3585-3608,共24页
Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properti... Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions. 展开更多
关键词 Mg alloys COATINGS SELF-REPAIRING corrosion protection Porous solids
下载PDF
Establishment and Optimization of Ablation Surrogate Model for Thermal Protection Material
5
作者 Weizhen Pan Bo Gao 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期477-493,共17页
The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of ca... The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of calculation.Especially in the process of optimization calculation and parameter identification,the ablation model needs to be called many times,so it is necessary to construct an ablation surrogate model to improve the computational efficiency under the premise of ensuring the accuracy.In this paper,the Gaussian process model method is used to construct a thermal protection material ablation surrogate model,and the prediction accuracy of the surrogate model is improved through optimization. 展开更多
关键词 ablation surrogate model thermal protection material
下载PDF
Outdoor Corrosion Performance Study of Selected Construction Materials in Bonny Island
6
作者 Chinedu Martin Ekuma Tolulope Charles Ogunyemi 《Open Journal of Applied Sciences》 CAS 2023年第1期76-88,共13页
Corrosion studies are important due to the enormous cost involved in the replacement of materials in all kinds of applications. The outdoor study on corrosion behavior of aluminum sheet, chequered aluminum plate and z... Corrosion studies are important due to the enormous cost involved in the replacement of materials in all kinds of applications. The outdoor study on corrosion behavior of aluminum sheet, chequered aluminum plate and zinc alloys roofing sheet commonly used as construction material within a highly industrial settlement were examined using the gravimetric technique. The outdoor corrosion of these alloys at different sites was observed via its exposure to atmospheric conditions, monitored and recorded for 12 months at an interval of 2 months. Results depicted a process spanning the initial and intermediate stages of corrosion. The samples of construction materials at Bonny island showed substantial weight losses and rate of corrosion which varied largely on percentage of atmospheric humidity, salt precipitations, industrial aerosols and corrosive gases present at the exposure site as well as the nature of the material and the presence of protective coating formed during corrosion process. The rapid rate of deterioration of these materials causes severe economic importance on the indigenes’ activities including the oil and gas industries and other construction companies on the island. Thus, there is urgent need for research concerned with methods to control or prevent excessive deterioration of metals in Bonny Island. 展开更多
关键词 corrosion Outdoor Environment Construction materials Weight Loss and Alloys
下载PDF
GALVANIC CORROSION BETWEEN GRAPHITE EPOXY COMPOSITE MATERIALS AND LY12CZ ALUMINUM ALLOY 被引量:2
7
作者 F.Lu W.Y.Shen J.G. Li and W.D. Zhen(Beijing Institute of Aeronautical Materials,Beijing 100095,) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第6期669-673,共5页
GALVANICCORROSIONBETWEENGRAPHITEEPOXYCOMPOSITEMATERIALSANDLY12CZALUMINUMALLOYF.Lu;W.Y.Shen;J.G.LiandW.D.Zhen... GALVANICCORROSIONBETWEENGRAPHITEEPOXYCOMPOSITEMATERIALSANDLY12CZALUMINUMALLOYF.Lu;W.Y.Shen;J.G.LiandW.D.Zhen(BeijingInstitute... 展开更多
关键词 galvanic corrosion GRAPHITE EPOXY COMPOSITE materialS
下载PDF
Energy balance model to assess the resistance of ballistic protection materials
8
作者 Bogdan Stirbu Irene Ndindabahizi +1 位作者 Tom Vancaeyzeele Cyril Robbe 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期141-153,共13页
NATO standards"AEP-2920 Procedures for the Evaluation and Classification of Personal Armor"and NIJ Standard-0101.06,indicate the method to statistically assess the resistance of personal ballistic protection... NATO standards"AEP-2920 Procedures for the Evaluation and Classification of Personal Armor"and NIJ Standard-0101.06,indicate the method to statistically assess the resistance of personal ballistic protection materials.To be validated and accepted through these procedures,a personal ballistic protection material should withstand an impact of a specific projectile with a probability of a partial penetration confidence level higher than 90%.The present study introduces an energy equilibrium method to assess the confidence level for the probability of partial penetration of ductile and brittle materials.The experiments performed in the Ballistics laboratory of the Royal Military Academy in Belgium,use a modified pendulum method that allowed the quantification of the energy balance before and after the ballistic impact.The results were then compared with the ones obtained using the method specified by the NATO standard and NIJ 0101.06,mentioned above.The outcome of this comparison shows the tendency of the values obtained by the pendulum method to faithfully follow the values obtained according to NATO and NIJ specifications.The presented method is not based on statistical estimations,but instead,an exact method,of computing the energy absorbed by the tested material.This is an advantage for the cases when the material to be evaluated is expensive or it is in the development phase and mass production is not possible. 展开更多
关键词 ENERGY NATO BALLISTIC protection materials STATISTICS NIJ BOOTSTRAPPING
下载PDF
Facile wet-chemical fabrication of bi-functional coordination polymer nanosheets for high-performance energy storage and anti-corrosion engineering
9
作者 Minjie Shi Nianting Chen +2 位作者 Yue Zhao Cheng Yang Chao Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期118-127,共10页
Organic materials are of great interest in various applications owing to their intrinsic designability,molecular controllability,ease of synthesis,and ecological sustainability.In this work,a facile and mild wet-chemi... Organic materials are of great interest in various applications owing to their intrinsic designability,molecular controllability,ease of synthesis,and ecological sustainability.In this work,a facile and mild wet-chemical strategy was carried out to construct a conjugated Ni-BTA coordination polymer via the π-d hybridization with 1,2,4,5-benzenetetramine(BTA)as π-conjugated ligands and Ni^(2+)as metallic centers,which exhibits a unique two-dimensional nanosheet-like structure with available active sites,sufficient electrochemical activity,and multi-electron redox capability.On the one hand,the as-prepared Ni-BTA coordination polymer as electrode material exhibits a rapid,reversible,and efficient energy storage behavior with a large reversible capacity of 198 mA·h·g^(-1)at 1 A·g^(-1) and a high-rate capability of 150 mA·h·g^(-1) at 20 A·g^(-1) in alkali-ion aqueous electrolyte,which are further demonstrated by the in-situ Raman investigation.On the other hand,the Ni-BTA coordination polymer as anti-corrosion additive was introduced into the epoxy resin to achieve a Ni-BTA epoxy coating,which shows a long-term anticorrosion performance with a low corrosion rate of 4.62×10_(-6) mm·a^(-1) and a high corrosion inhibition efficiency of 99.86%,suggesting its great engineering potential as the bi-functional organic material for high-performance energy storage and corrosion protection. 展开更多
关键词 Organic compounds NANOSTRUCTURE Dual functionality Energy storage corrosion protection
下载PDF
Corrosion resistance and mechanisms of smart micro-arc oxidation/epoxy resin coatings on AZ31 Mg alloy: Strategic positioning of nanocontainers
10
作者 Ai-meng Zhang Chengbao Liu +4 位作者 Pu-sheng Sui Cong Sun Lan-yue Cui M.Bobby Kannan Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4562-4574,共13页
Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategi... Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategically incorporated in the MAO micropores and in the top EP layer. The influence of the strategic positioning of the nanocontainers on the corrosion protective performance of coating was investigated. The experimental results and analysis indicated that the superior corrosion resistance of the hybrid coating is ascribed to the protection mechanisms of the nanocontainers. This involves two phenomena:(1) the presence of the nanocontainers in the MAO micropores decreased the distance between MSN@SB and the substrate, demonstrating a low admittance value(^5.18 × 10^(-8)Ω^(-1)), and thus exhibiting significant corrosion inhibition and self-healing function;and(2) the addition of nanocontainers in the top EP layer densified the coating via sealing of the inherent defects, and hence the coating maintained higher resistance even after 90 days of immersion(1.13 × 10^(10)Ω cm^(2)).However, the possibility of corrosion inhibitors located away from the substrate transport to the substrate is reduced, reducing its effective utilization rate. This work demonstrates the importance of the positioning of nanocontainers in the coating for enhanced corrosion resistance,and thereby providing a novel perspective for the design of smart protective coatings through regulating the distribution of nanocontainers in the coatings. 展开更多
关键词 NANOCONTAINERS Self-healing coating Micro-arc oxidation corrosion protection Magnesium alloys
下载PDF
High-performance triboelectric nanogenerator based on ZrB_(2)/polydimethylsiloxane for metal corrosion protection
11
作者 Xiucai Wang Naijian Hu +6 位作者 Jia Yang Jianwen Chen Xinmei Yu Wenbo Zhu Chaochao Zhao Ting Wang Min Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1957-1964,共8页
Metal corrosion causes billions of dollars of economic losses yearly.As a smart and new energy-harvesting device,triboelectric nanogenerators(TENGs)can convert almost all mechanical energy into electricity,which leads... Metal corrosion causes billions of dollars of economic losses yearly.As a smart and new energy-harvesting device,triboelectric nanogenerators(TENGs)can convert almost all mechanical energy into electricity,which leads to great prospects in metal corrosion prevention and cathodic protection.In this work,flexible TENGs were designed to use the energy harvested by flexible polydimethylsiloxane(PDMS)films with ZrB_(2)nanoparticles and effectively improve the dielectric constant by incorporating ZrB_(2).The open-circuit voltage and short-circuit current were 264 V and 22.9μA,respectively,and the power density of the TENGs reached 6 W·m^(-2).Furthermore,a selfpowered anti-corrosion system was designed by the rectifier circuit integrated with TENGs,and the open-circuit potential(OCP)and Tafel curves showed that the system had an excellent anti-corrosion effect on carbon steel.Thus,the system has broad application prospects in fields such as metal cultural relics,ocean engineering,and industry. 展开更多
关键词 ZrB_(2) triboelectric nanogenerator SELF-POWERED corrosion protection
下载PDF
Thermally insulating and fire-retardant bio-mimic structural composites with a negative Poisson's ratio for battery protection
12
作者 Fengyin Du Zuquan Jin +9 位作者 Ruizhe Yang Menglong Hao Jiawei Wang Gang Xu Wenqiang Zuo Zifan Geng Hao Pan Tian Li Wei Zhang Wei She 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期83-96,共14页
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a... Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices. 展开更多
关键词 battery protection negative Poisson's ratio thermal insulation TOUGHNESS wood-inspired materials
下载PDF
The role of Cr content on the corrosion resistance of carbon steel and low-Cr steels in the CO_(2)-saturated brine
13
作者 Cai-Lin Wang Hong-Da Guo +9 位作者 Jian Fang Sheng-Xian Yu Xiao-Qi Yue Qi-Hui Hu Cui-Wei Liu Jia-Xuan Zhang Rui Zhang Xiu-Sai Xu Yong Hua Yu-Xing Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1155-1168,共14页
The selection of appropriate materials for the transportation pipelines is of vital importance to ensure the safety operation in Carbon Capture,Utilisation and Storage(CCUS).To clarify the effects of Cr content in ste... The selection of appropriate materials for the transportation pipelines is of vital importance to ensure the safety operation in Carbon Capture,Utilisation and Storage(CCUS).To clarify the effects of Cr content in steel on the resistance against general and localised corrosion,electrochemistry methods combined with pH measurements and various surface analysis techniques were implemented on X65,1Cr,3Cr and 5Cr steel samples in a CO_(2)-saturated solution at 60°C and pH 6.6 during 192 h of immersion.Additionally,thermodynamic and kinetic analyses of the formation of the corrosion products on carbon steel and low-Cr steels were performed.The results show that the general corrosion resistance increased with rising Cr content without the presence of significant corrosion products formation.However,with the formation and development of the corrosion products,the general corrosion resistance reduced with the increase in Cr content.The formation of the compact crystalline FeCO3 on X65 and 1Cr steel surfaces offered superior general corrosion protection,while cannot provide enough localised corrosion protection.By contrast,the double-structural corrosion product layers on 3Cr and 5Cr steels notably suppressed the localised corrosion,but providing poor protection against general corrosion over long immersion periods.This study reveals the contributions of Cr content on general and localised corrosion resistance at various periods,providing references for material selection and evaluation in CO_(2) environments relevant for CCUS. 展开更多
关键词 CO_(2)corrosion material selection Cr content CCUS
下载PDF
On investigating the soda-lime shot blasting of AZ31 alloy:Effects on surface roughness,material removal rate,corrosion resistance,and bioactivity 被引量:2
14
作者 Gurmider Singh Sunpreet Singh +1 位作者 Chander Prakash Seeram Ramakrishna 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1278-1290,共13页
In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,... In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,stand-off distance,and blast duration,have been studied in-response of material removal rate(MRR)and surface roughness(SR)and corresponding statistical models have been obtained.The multi-objective optimization has also been performed to obtain parameters for maximum MRR and minimum SR.The corrosion behavior of the treated specimens has been performed to study their in-vitro biodegradability in simulated body fluid(SBF)for 1,3,7,10,15,and 21 days.The wettability study of the SBSL treated samples has been investigated using sessile drop methodology.Further,cell adhesion test has also been performed to study the biocompatibility characteristics of the SBSL treated samples using Huh7 liver cell lines.Based on obtained quantitative data as well as scanning electron microscopy analysis of treated samples,the SBSL treatment of the AZ31 alloy has been found highly useful in producing biocompatibility surfaces along with desirable morphological features. 展开更多
关键词 AZ31 Soda-lime Surface roughness material removal rate corrosion WETTABILITY BIOCOMPATIBILITY
下载PDF
GALVANIC CORROSION AND PROTECTION OF GECM/LY12CZ COUPLES UNDER DIFFERENT ATMOSPHERIC EXPOSURE CONDITIONS 被引量:3
15
作者 F.Lu Q.P.Zhong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第1期41-45,共5页
Galvanic compatibility between graphite epoxy composite materials (GECM) andLY12CZ aluminum alloy was evaluated in different atmospheric corrosion environ-ments and by laboratory electrochemical measurements. Open cir... Galvanic compatibility between graphite epoxy composite materials (GECM) andLY12CZ aluminum alloy was evaluated in different atmospheric corrosion environ-ments and by laboratory electrochemical measurements. Open circuit potential elec-trochemical measurements showed a relatively large potential difference about 1 voltbetween the GECM and LY12CZ aluminum alloy, and this difference provided thedriving force for galvanic corrosion of the LY12CZ aluminum alloy as an anode.Having been exposed for 1, 3 or 5 years in Beijing, Tuandao and Wanning station,GECM/L Y12CZ couples showed significant losses of strength and elongation. Protec-tive coatings and non-conductive barriers breaking the galvanic corrosion circuit wereevaluated under the same atmospheric corrosive conditions. Epoxy primer paint, glasscloth barriers and LY12CZ anodizing were effective in galvanic corrosion control forGECM/L Y12CZ couples. 展开更多
关键词 铝合金 复合材料 GECM 腐蚀 防腐
下载PDF
Modeling and Study Influence of the Temperature Parameter on Corrosion Factors in the Atmospheric Distillation Column of Crude Oil
16
作者 Ndiassé Fall Dialo Diop +4 位作者 Sossé Ndiaye Kharouna Talla Haroun Ali Adannou Astou Sarr Aboubaker Chèdikh Beye 《Open Journal of Yangtze Oil and Gas》 CAS 2023年第1期1-10,共10页
Atmospheric distillation is the first step in separating crude oil into by-products. It uses the different boiling temperatures of the components of crude oil to separate them. But crude oil contains a large quantity ... Atmospheric distillation is the first step in separating crude oil into by-products. It uses the different boiling temperatures of the components of crude oil to separate them. But crude oil contains a large quantity of acids and corrosive gases, including sulfur compounds, naphthenic acids, carbon dioxide, oxygen, etc. However, the temperature has an important influence on the aggressiveness of the corrosion factors in the atmospheric distillation column. This paper aims to investigate the role of temperature on corrosive products in the atmospheric distillation column. The results of the developed model show that the temperature increases the corrosion rate in the atmospheric distillation column but above a certain temperature value (about 600 K), it decreases. This illustrates the dual role played by temperature in the study of corrosion within the atmospheric distillation column. 展开更多
关键词 Atmospheric Distillation corrosion Crude Oil materials TEMPERATURE
下载PDF
Corrosion behavior of high-level waste container materials Ti and Ti-Pd alloy under long-term gamma irradiation in Beishan groundwater 被引量:1
17
作者 魏强林 李玉红 +3 位作者 黄彦良 杨冬燕 杨波 刘义保 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期93-100,共8页
Titanium and titanium-palladium alloys are important potential materials for nuclear waste container,which will endure both intenseγ-irradiation and groundwater erosion.Therefore,it is very important to investigate t... Titanium and titanium-palladium alloys are important potential materials for nuclear waste container,which will endure both intenseγ-irradiation and groundwater erosion.Therefore,it is very important to investigate the corrosion behavior of the container materials.In this research,the cumulative dose effect of TA8-1 type titanium-palladium alloy(TA8-1)and TA2-type pure titanium(TA2)underγ-irradiation was studied based on the geological disposal of nuclear wastes.The irradiation experiments were performed at room temperature using^(60)Co gamma sources with a 5.0-kGy·h^(-1)intensity for 40,80 or 160 days,respectively.The pH value and conductivity of Beishan groundwater were investigated.The results showed that the pH value changed from alkaline(8.22)to acidic(2.46 for TA8-1 and 2.44 for TA2),while the un-irradiated solution remained alkaline(8.17 for TA8-1 and 8.20 for TA2)after 160 days.With the increase of irradiation dose,the conductivity increases rapidly and then tends to become stable,which indicates that the titanium dioxide corrosion layer formed on the surface of the sample surface effectively prevents further corrosion.Meanwhile,XRD and SEM-EDS analysis results show that the main components of corrosion products are TiO_(2) and TiO.The titanium on the surface of the sample is oxidized,resulting in slight uneven local corrosion.The results show that TA8-1 and TA2 are suitable to be used as candidate materials for high-level waste(HLW)disposal containers due to their excellent performance under long-term and high-dose irradiation corrosion. 展开更多
关键词 Γ-IRRADIATION corrosion high-level waste container material
原文传递
Corrosion Mechanism of Alumina-magnesia Dry Materials for Smelting Manganese/chromium Steel in Coreless Medium Frequency Induction Furnaces
18
作者 LIU Chenchen HUANG Ao +3 位作者 NIE Jianhua GU Huazhi QIN Chuanjiang Lidah Mpoli NACHILIMA 《China's Refractories》 CAS 2023年第4期8-15,共8页
Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composit... Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials. 展开更多
关键词 coreless medium frequency induction furnace manganese/chromium steel alumina-magnesia dry materials sintering layer corrosion mechanism
下载PDF
Chemical modification of barite for improving the performance of weighting materials for water-based drilling fluids
19
作者 Li-Li Yang Ze-Yu Liu +3 位作者 Shi-bo Wang Xian-Bo He Guan-Cheng Jiang Jie Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期551-566,共16页
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r... With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs. 展开更多
关键词 Drilling fluids Weighting materials Filtration control Reservoir protection Stability property
下载PDF
Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method
20
作者 Xiaozhou Xia Changsheng Qin +2 位作者 Guangda Lu Xin Gu Qing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2257-2276,共20页
Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac... Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures. 展开更多
关键词 Fracture phase field corrosion-induced cracking non-uniform corrosion expansion protective layer thickness reinforcement concrete
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部