期刊文献+
共找到588,511篇文章
< 1 2 250 >
每页显示 20 50 100
Mussel-inspired PTW@PDA composites for developing high-energy gun propellants with reduced erosion and enhanced mechanical strength
1
作者 Xijin Wang Zhitao Liu +3 位作者 Pengfei Sun Feiyun Chen Bin Xu Xin Liao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期675-690,共16页
The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate... The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength. 展开更多
关键词 High energy gun propellant Potassium titanate whiskers Polydopamine modification Erosion inhibitors mechanical reinforcing fillers
下载PDF
Mechanical strength and the degradation mechanism of metakaolin based geopolymer mixed with ordinary Portland cement and cured at high temperature and high relative humidity
2
作者 Xia Miao Xiaofan Pang +3 位作者 Shiyu Li Haoguang Wei Jianhao Yin Xiangming Kong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期118-130,共13页
Geopolymer is a new type of eco-friendly cementitious material, and its superior drying and high temperature resistance has been widely recognized. The service performance of geopolymer under 150 ℃ high-temperature h... Geopolymer is a new type of eco-friendly cementitious material, and its superior drying and high temperature resistance has been widely recognized. The service performance of geopolymer under 150 ℃ high-temperature hydrothermal conditions is still less discussed. In this paper, the mechanical strength of pure metakaolin system with low calcium content and metakaolin-cement system with high calcium content under hydrothermal and non-hydrothermal conditions were studied. The results show that under 150 ℃ hydrothermal conditions, the strength of pure metakaolin geopolymer sharply decreases by reduction rate of 81.8% compared to the sample under 150 ℃ drying conditions, while the strength of metakaolin-cement geopolymers is well retained with only a slight decrease of 14.4%. This is mainly because the predominantly hydration product sodium aluminosilicate(N-A-S-H) gel of pure metakaolin system undergoes the process of “dissociation–repolymerization–crystallization” under 150 ℃ hydrothermal conditions, resulting in the loss of cementation ability and obvious deterioration of mechanical strength. In the metakaolin-cement system, the high-calcium calcium silicate gel(C-A-S-H)gel maintains a stable structure, thereby maintaining the macroscopic strength of the material under the hydrothermal conditions. 展开更多
关键词 GEOPOLYMER Hydrothermal conditions strength DEGRADATION CRYSTALLIZATION GELS
下载PDF
Preparation and Study of Borosilicate Foam Glass with High Thermal Insulation and Mechanical Strength
3
作者 Yiwen Zhang Jianjun Xie +6 位作者 Minghui Sun Shaolong Wang Tengfei Xu Yonggen Xu Xiaoqing Ding Ying Shi Lei Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第5期2125-2141,共17页
Foam glass is a kind of green building material that is widely used because of its excellent thermal insulation and mechanical properties.In this study,the borosilicate foam glass was fabricated by powder sintering me... Foam glass is a kind of green building material that is widely used because of its excellent thermal insulation and mechanical properties.In this study,the borosilicate foam glass was fabricated by powder sintering method using recycled soda lime waste glass,quartz,and borax as the primary raw materials.CaCO_(3)was used as a foaming agent and Na_(2)CO_(3)as a flux agent.Results showed that as the quartz content decreases from 30 to 17.5 wt.%and borax content increases from 5 to 17.5 wt.%,the pore size,porosity,and thermal insulation of borosilicate foam glass increase significantly,while the compressive strength decreases slightly.When the content of quartz and borax are both 17.5 wt.%,borosilicate foam glass with outstanding performance can be prepared,whose pore distribution is uniform,mean pore size is 1.93 mm,total porosity is 83.44%,thermal conductivity is 0.0711W/(m⋅K),and compressive strength is 2.37 MPa.Finally,the influences of foaming agent content,flux agent content,foaming temperature,and holding time on the pore structure and various properties of borosilicate foam glass were investigated by orthogonal test.According to the results,the foaming temperature has a significant effect,and appropriate foaming agent content,flux agent content,and holding time help to form a uniform pore structure,thereby improving the thermal insulation and mechanical strength of the borosilicate foam glass. 展开更多
关键词 Foam glass waste glass thermal conductivity compressive strength
下载PDF
The effect of al particle size on thermal decomposition,mechanical strength and sensitivity of Al/ZrH_(2)/PTFE composite 被引量:4
4
作者 Jun Zhang Yu-chun Li +6 位作者 Jun-yi Huang Jia-xiang Wu Qiang Liu Shuang-zhang Wu Zhen-ru Gao Sheng Zhang Li Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期829-835,共7页
To study the thermal decomposition of Al/Zr H_(2)/PTFE with different Al particle size as well as mechanical strength and impact sensitivity under medium and low strain rates,molding-vacuum sintering was adopted to pr... To study the thermal decomposition of Al/Zr H_(2)/PTFE with different Al particle size as well as mechanical strength and impact sensitivity under medium and low strain rates,molding-vacuum sintering was adopted to prepare four groups of power materials and cylindrical specimens with different Al particle size.The active decomposition temperature of Zr H_(2) was obtained by TG-DSC,and the quasi-static mechanics/reaction characteristics as well as the impact sensitivity of the specimen were studied respectively by quasi-static compression and drop-hammer test.The results show that the yield strength of the material decreased with the increase of the Al particle size,while the compressive strength,failure strain and toughness increased first and then decreased,which reached the maximum values of 116.61 MPa,191%,and 119.9 MJ/m respectively when the Al particle size is 12-14 mm because of particle size grading.The specimens with the highest strength and toughness formed circumferential open cracks and reacted partly when pressed.Those with developmental cracks formed inside did not react.It is considered that fracture of specimens first triggered initial reaction between Al and PTFE to release an amount of heat.Then ZrH_(2) was activated and decomposed,and participated in subsequent reaction to generate Zr C.The impact sensitivity of the specimens decreased with the increase of Al particle size. 展开更多
关键词 Al/ZrH_(2)/PTFE Thermal decomposition mechanical strength Reaction characteristics Impact sensitivity
下载PDF
Investigation on Thermal Insulation and Mechanical Strength of Lightweight Aggregate Concrete and Porous Mortar in Cold Regions
5
作者 Jianan Wu Ke Xue +5 位作者 Zhaowei Ding Lei Lang Kang Gu Xiaolin Li Mingli Zhang Desheng Li 《Journal of Renewable Materials》 SCIE EI 2022年第12期3167-3183,共17页
Thermal insulation is an important indicator to evaluate the construction material in cold region engineering.As we know,adding the industrial waste as lightweight aggregate or creating the pore inside the cement-base... Thermal insulation is an important indicator to evaluate the construction material in cold region engineering.As we know,adding the industrial waste as lightweight aggregate or creating the pore inside the cement-based composite could make the texture loose,and the thermal insulating capacity of the material would be improved with this texture.Using these methods,the industrial by-product and engineering waste could be cycled in an efficient way.Moreover,after service the fragmented cement composites paste could be used as aggregate in the thermal insulating concrete again.While the porous texture is not favorable for the mechanical strength and long-term durability in a cold environment.To balance the above three requirements from two opposite directions,different processing methods were applied to create the thermal insulation concrete/mortar.Firstly,the organic/inorganic lightweight aggregate,including the Expanded Polystyrene(EPS),Expanded Perlite(EP),and Ceramsite(CRMST)particles,were applied to create the Lightweight Aggregate Concrete(LWAC).As the comparative tests,the expanded Superabsorbent Polymer(SAP)hydrogel and Air-Entraining Agent(AEA)were also introduced to create the porous mortar.The above concrete/mortar was tested in the normal state and under the Freeze-Thaw cycle to explore the engineering performance in cold regions.During the experimenting process,the thermal insulation,mechanical strength,and frost resistance of these cement-based composites were investigated,and an optimal thermal insulation concrete/mortar was determined. 展开更多
关键词 Thermal insulation mechanical strength cement-based composite freeze-thaw cycle frost resistance
下载PDF
A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties 被引量:2
6
作者 Lei Zhu Chun-ming Xiong +3 位作者 Xiao-fen Tang Li-jun Wang Kang Peng Hai-yang Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第3期350-358,368,共10页
Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into t... Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly. 展开更多
关键词 DOUBLE NETWORK HYDROGEL WEAK POLYELECTROLYTE High mechanical strength Shape MEMORY properties
下载PDF
Facile Fabrication of Cellulosic Paper-based Composites with Temperature-controlled Hydrophobicity and Excellent Mechanical Strength 被引量:6
7
作者 Tongtong Yun Yilin Wang +3 位作者 Jie Lu Yi Cheng Yanna Lyu Haisong Wang 《Paper And Biomaterials》 2020年第2期20-27,共8页
In this paper,we presented a novel strategy to employ a plantderived carbohydrate polymer,i.e.,cellulose,to prepare a hydrophobic composite.Cellulose was used as a scaffold,and ethylene-propylene side by side(ES)fiber... In this paper,we presented a novel strategy to employ a plantderived carbohydrate polymer,i.e.,cellulose,to prepare a hydrophobic composite.Cellulose was used as a scaffold,and ethylene-propylene side by side(ES)fiber was thermally melted and then coated on the cellulose surface to achieve hydrophobicity.Experimental results revealed that the thermocoating ES fibers greatly increased the water contact angle of the cellulose scaffold from 25°to 153°while simultaneously enhanced the wet tensile strength of the composite approximately 6.7-fold(drying temperature of 170℃)compared with the pure cellulose paper.In particular,compared with other related research,the prepared cellulose-based composite possessed excellent hydrophobicity and superior mechanical strength,which introduces a new chemical engineering approach to prepare hydrophobic cellulose-based functional materials. 展开更多
关键词 CELLULOSE ES fiber PAPER-BASED COMPOSITES HYDROPHOBICITY mechanical strength
下载PDF
Microstructure and Mechanical Strength Predictive Modeling in Al 5052-Trapezoidal Grooved SS 304 Explosive Cladding 被引量:2
8
作者 Saravanan S Raghukandan K 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第5期958-966,共9页
Aluminum alloy plates were explosively cladded to stainless steel plates with trapezoidal grooves on the mating surface.The process parameters viz,loading ratio,standoff distance and flyer plate thickness were varied ... Aluminum alloy plates were explosively cladded to stainless steel plates with trapezoidal grooves on the mating surface.The process parameters viz,loading ratio,standoff distance and flyer plate thickness were varied based on the Taguchi analogy.The variation in the process parameters alters the kinetic energy dissipation and the deformation work performed at the interface,and dictates the interfacial wave amplitude and the mechanical strength of the dissimilar explosive clad.The optimum level of process parameters for attaining higher tensile and shear strength is computed by signal-to-noise ratio.Further,a mathematical model is developed for calculating tensile and shear strength of the clad,based on the regression analysis using statistical software Minitab-16,and the level of fit is determined by analysis of variance. 展开更多
关键词 explosive cladding trapezoidal grooves MICROSTRUCTURE OPTIMIZATION strength
原文传递
Enhancing the Mechanical Strength for a Microwave Absorption Composite Based on Graphene Nanoplatelet/Epoxy with Carbon Fibers 被引量:1
9
作者 Maryam Jahan Richard Osuemeshi Inakpenu +1 位作者 Kuo Li Guanglin Zhao 《Open Journal of Composite Materials》 2019年第2期230-248,共19页
Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanic... Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanical strength of the composite for multifunctional potentials. We used carbon fiber (four layers) to reinforce GNP/epoxy composite (2 mm thick) and investigated their multifunctional properties with GNP loading from 3 to 7 wt%. We measured the tensile strength, hardness, and MW absorption (26.5 - 40 GHz) of composite samples. Our results showed an increase in tensile strength to 109.1 ± 7.9 MPa with 7 wt% GNP in the composite from 15.3 MPa for pure epoxy. The hardness of the composites was also substantially enhanced with GNP loading up to 7 wt%. A MW absorption ratio of 72% was attained for the sample with 7 wt% GNP loading near 40 GHz. The homogenous dispersion of GNPs in the matrix reduces the stress concentration and minimizes the influence of the defects. The high MW absorption and large transmission loss together with enhanced mechanical strength provides a novel multifunctional material for potential applications. 展开更多
关键词 Microwave Absorption mechanical strength GRAPHENE Nanoplatelet/Epoxy/Carbon Fiber COMPOSITE Multifunctional COMPOSITE
下载PDF
Effects of Cure Pressure Induced Voids on the Mechanical Strength of Carbon/Epoxy Laminates 被引量:1
10
作者 Ling LIU, Boming ZHANG, Zhanjun WU and Dianfu WANGCenter for Composite Materials, Harbin Institute of Technology, Harbin 150001, ChinaProf., 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第1期87-91,共5页
This work aims at designing a set of curing pressure routes to produce laminates with various void contents. The effects of various consolidation pressures resulting in different void contents on mechanical strength o... This work aims at designing a set of curing pressure routes to produce laminates with various void contents. The effects of various consolidation pressures resulting in different void contents on mechanical strength of carbon/epoxy laminates have been examined. Characterization of the voids, in terms of void volume fraction, void distribution,size, and shape, was performed by standard test, ultrasonic inspection and metallographic analysis. The interlaminar shear strength was measured by the short-beam method. An empirical model was used to predict the strength vs porosity. The predicted strengths conform well with the experimental data and voids were found to be uniformly distributed throughout the laminate. 展开更多
关键词 碳环氧薄片 高压蒸汽养护 空隙 机械强度
下载PDF
Mechanical Strength and Structural Basis ofβ2 Integrin to Mediate Neutrophil Accumulation on Liver Sinusoidal Endothelial Cells:A Study Using Atomic Force Microscopy and Molecular Dynamics Simulations
11
作者 Ning Li Xiao Zhang +7 位作者 Peiwen Li Hao Yang Chunfang Tong Shouqin Lü Yan Zhang Zhiyi Ye Jun Pan Mian Long 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第8期263-279,共17页
Neutrophil(PMN)accumulation on liver sinusoidal endothelial cells(LSECs)is crucial to pathogen clearance and tissue damage in the liver sinusoids and controlled by a series of adhesion molecules expressed on the surfa... Neutrophil(PMN)accumulation on liver sinusoidal endothelial cells(LSECs)is crucial to pathogen clearance and tissue damage in the liver sinusoids and controlled by a series of adhesion molecules expressed on the surface of PMNs and LSECs.The role of lymphocyte function-associated antigen-1(LFA-1)and macrophage-1 antigen(Mac-1)in this process is still contentious.Here we compared the dynamic force spectra of the binding ofβ2 integrin to intercellular adhesion molecule-1(ICAM-1)on LSECs using atomic force microscopy(AFM)and performed free and steered molecular dynamics(MD)simulations to analyze their structural bases of LFA-1-or Mac-1-I-domain and ICAM-1-D1 or D3 pair in their force spectra.Our AFM data suggest that the mechanical strength of LFA-1-ICAM-1 bond is significantly stronger than that of Mac-1-ICAM-1 bond,implying a dominate role for LFA-1 to mediate PMN adhesion under shear flow.MD simulations indicated that spontaneous dissociation of Mac-1-I-domain vs.ICAMD3-domain is slower with the stronger interaction energy than that for LFA-1 I-domain vs.ICAM-D1-domain and that the rupture force for Mac-1 is lower than that for LFA-1,which are in qualitative agreement with the above experimental observations.These data indicate that the biomechanical features of LFA-1 and Mac-1 to mediate PMN adhesion on LSECs in vitro are similar with those in other tissues like cerebrovascular endothelium,while Mac-1-mediated PMN recruitment in liver sinusoids may stem from the slow blood flow in vivo.These findings further the understandings of PMN recruitment under shear flow in liver sinusoids. 展开更多
关键词 LIVER sinusoidal ENDOTHELIAL cells NEUTROPHILS β2 INTEGRIN shear flow mechanical strength
下载PDF
Crystallinity, Microstructure and Mechanical Strength of Yttria-Stabilized Tetragonal Zirconia Ceramics for Optical Ferrule
12
作者 Sung-Dai Kim Kyu-Seog Hwang 《Materials Sciences and Applications》 2011年第1期1-5,共5页
Yttria-stabilized zirconia ceramics were prepared by using different raw materials in order to compare commercially available optical ferrule. Injection-molded cylindrical green compacts were sintered in air at 1350&#... Yttria-stabilized zirconia ceramics were prepared by using different raw materials in order to compare commercially available optical ferrule. Injection-molded cylindrical green compacts were sintered in air at 1350°C, 1400°C and 1450°C for 2 hrs, followed by furnace cooling. Crystallinity, microstructure and mechanical strength of the sintered body were evaluated by using an X-ray diffraction analyses, a field emission-scanning electron microscope, a universal tester, and a micro-hardness tester, respectively. For practical usage, the sample B sintered at 1350°C was favorable because of high tetragonality and good mechanical strength. 展开更多
关键词 ZIRCONIA TETRAGONALITY mechanical strength
下载PDF
XRD Evaluation of Relative Mechanical Strength and Irradiation Resistance of Synthetic Diamond
13
作者 E. M. Shishonok V. G. Luhin 《Journal of Materials Science and Chemical Engineering》 2015年第12期36-41,共6页
We continue here our previous work where SD powders were significantly strengthened by irradiation with electrons of lower energy under smaller dose. Previous results were obtained from the crushing strength analysis,... We continue here our previous work where SD powders were significantly strengthened by irradiation with electrons of lower energy under smaller dose. Previous results were obtained from the crushing strength analysis, no XRD was applied. In present work, powders of synthetic diamond with low strengthwere sorted on sets with different grain size. As established, the sets had various crushing strengths and morphology. They were irradiated with high energy electrons (6.5 MeV, D = 2 × 1019 and D = 6 × 1019 cm?2, Tirr = 450 K) and analyzed using XRD (CuKα) before and after irradiation. Nonlinear dependences a(Θ) = f{R(Θ), where a(Θ) is lattice constant and R(Θ) is Raily function, and the discovered extra-splits (additional to α1-α2-doublets on CuKα) of basic peaks in XRD patterns from the SD sets, testified that crystal lattice of diamond in sets was variously distorted, like of cBN doped with rare earth elements. As established, the first irradiation led to decreasing distortions, the more significantly the higher initial strength of the set. The second irradiation produced softening and increasing distortions of crystal lattice of diamond, the more effectively the less initial strength of diamond. XRD allows indirectly to presort synthetic diamond off the material with critically low relative mechanical strength as well as evaluate resistance of diamond crystal lattice against heavy irradiation and other external impacts. 展开更多
关键词 Synthetic DIAMOND CRUSHING strength Electron IRRADIATION XRD Crytsalline DISTORTION
下载PDF
Engineering Chitosan Using <i>α</i>, <i>ω</i>-Dicarboxylic Acids—An Approach to Improve the Mechanical Strength and Thermal Stability
14
作者 G. Sailakshmi Tapas Mitra +1 位作者 Suvro Chatterjee A. Gnanamani 《Journal of Biomaterials and Nanobiotechnology》 2013年第2期151-164,共14页
The current scenario in tissue engineering research demands materials of requisite properties, viz., high porosity, mechanical stability, thermal stability, biocompatibility and biodegradability for clinical applicati... The current scenario in tissue engineering research demands materials of requisite properties, viz., high porosity, mechanical stability, thermal stability, biocompatibility and biodegradability for clinical applications. However, bringing these properties in single biomaterial is a challenging task, which needs intensive research on suitable cross-linking agents. In the present study, 3D scaffold was prepared with above said properties using chitosan and oxalic (O), malonic (M), succinic (S), glutaric (G), adipic (A), pimelic (P), suberic (SU), azelaic (AZ) and sebacic (SE) acid (OMS- GAP-SAS) individually as a non covalent cross-linkers as well as the solvent for chitosan. Assessment on degree of cross-linking, mechanical strength, FT-IR analysis, morphological observation, thermal stability, binding interactions (molecular docking), in vitro biocompatibility and its efficacy as a wound dressing material were performed. Results revealed the degree of cross-linking for OMSGAP-SAS engineered chitosan were in the range between ≈55% - 65% and the biomaterial demonstrated thermal stability more than 300°C and also exhibited ≥3 - 4 fold increase in mechanical strength compared to chitosan alone. The bioinformatics studies evidently proved the chemistry behind the interaction of OMSGAP-SAS with chitosan. OMSGAP-SAS played dual role to develop the chitosan biomaterial with above said properties, thus matching the requirements needed for various applications. 展开更多
关键词 Biomaterial CHITOSAN CYTOCOMPATIBILITY Dicarboxylic Acid mechanical PROPERTY
下载PDF
Innovative Production of PCMs (Phase Change Materials) Preparation by Vacuum Impregnation: Mechanical Strength of Mortars Cement with Composite PCMs Content
15
作者 Sirikalaya Suvachittanont Apinya Duangchan Thanit Metheenukul 《Journal of Chemistry and Chemical Engineering》 2013年第11期1094-1099,共6页
关键词 复合相变材料 真空浸渍工艺 水泥砂浆 机械强度 生产 差示扫描量热计 粉煤灰复合材料 浸漆
下载PDF
Radiation synthesis of polymer/clay nanocomposite hydrogels with high mechanical strength 被引量:1
16
作者 马荣芳 袁劼 +5 位作者 李灿灿 彭静 董珍 许零 李久强 翟茂林 《Nuclear Science and Techniques》 SCIE CAS CSCD 2014年第6期40-47,共8页
Poor mechanical properties of PNIPAAm hydrogels have limited their applications. Nanocomposite hydrogels(NC gels) which incorporate inorganic clay possess high mechanical strength and other desirable properties.In thi... Poor mechanical properties of PNIPAAm hydrogels have limited their applications. Nanocomposite hydrogels(NC gels) which incorporate inorganic clay possess high mechanical strength and other desirable properties.In this paper, we report a facile approach to synthesize NC gels using radiation technique. With exfoliated clay sheets acting as crosslinkers, N-isopropylacrylamide monomers are polymerized and crosslinked to form NC gels under γ-irradiation at room temperature. Apart from regular swelling behavior and interesting performance in thermo sensitivity, the radiation synthesized NC gel(RNC gel) has good optical transparency, high strength and flexibility. Through Micro-FTIR, XPS and TG analyses, a particular chemically crosslinked organic/inorganic network was identified in the RNC gel. 展开更多
关键词 聚合物/粘土纳米复合材料 复合水凝胶 辐射合成 机械强度 PNIPAAM 有机/无机 机械性能 光学透明性
下载PDF
Isocyanate-terminated Polyethers Toughened Epoxy Resin:Chemical Modification,Thermal Properties,and Mechanical Strength
17
作者 蔡浩鹏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期256-260,共5页
The toughening of the diglycidyl ether of bisphenol A epoxy resin with isocyanate-terminated polyethers(ITPE)was investigated.The progress of the reaction and the structural changes during modification process were st... The toughening of the diglycidyl ether of bisphenol A epoxy resin with isocyanate-terminated polyethers(ITPE)was investigated.The progress of the reaction and the structural changes during modification process were studied using FTIR spectroscopy.The studies support the proposition that TDI(tolylene diisocyanate)acts as a coupling agent between the epoxy and polyethers,forming a urethane linkage with the former and the latter,respectively.Me THPA-cured ER/ITPs blends were characterized using dynamic mechanical analysis(DMA)and thermogravimetric analysis(TGA).It is indicated the glass transition temperature(T g )of systems was lower than the T g of pure epoxy resin and overfull ITPE separated from the modified epoxy resin and formed another phase at an ITPE-content of more than 10wt%.The thermal stability was decreased by the introduction of ITPE.The impact strength and the flexural strength of the cured modified-epoxy increased with increasing the ITPE content and a maximum plateau value of about 24.03 kJ/m2 and 130.56 MPa was measured in 10wt%ITPE.From scanning electron microscopy(SEM)studies of the fractrue surfaces of ER/ITPE systems,the nature of the micromechanisms responsible for the increases in toughness of the systems was identified. 展开更多
关键词 端异氰酸酯聚醚 韧化处理 环氧树脂 化学改性 热性能 机械强度
下载PDF
Effect of Steel Slag and Granulated Blast-furnace Slag on the Mechanical Strength and Pore Structure of Cement Composites 被引量:3
18
作者 徐刚 HE Xingyang 何亚伯 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1186-1192,共7页
Reuse of solid industrial wastes is an effective approach to develop low-carbon construction materials. This paper examines how two materials, steel slag(ST) and granulated blast-furnace slag(SL) impact the mechanical... Reuse of solid industrial wastes is an effective approach to develop low-carbon construction materials. This paper examines how two materials, steel slag(ST) and granulated blast-furnace slag(SL) impact the mechanical performance and pore structure of cement-based systems. Analysis was done on the variations of the porosity, pore size, and pore volume distribution with the curing age and replacement content, and the fractal dimensions of pore surfaces. The results suggested that systems with both supplementary materials had lower early strengths than pure cement, but could generally surpass pure cement paste after 90 d; higher SL content was particularly helpful for boosting the late strengths. The addition of ST increased the porosities and mean pore sizes at each age, and both increased with ST content; SL was helpful for decreasing the system's late porosity(especially harmless pores below 20 nm); The lowest porosity and mean pore size were obtained with 20% SL. Both systems had notably fractal characteristics on pore surfaces, with ST systems showing the highest dimensions at 10% ST, and SL systems at 20% SL. Compressive strength displayed a significant linear increase with fractal dimension. 展开更多
关键词 机械力 孔结构 水泥 炉渣 炉子 强风 成粒
原文传递
Fabrication, lattice strain, corrosion resistance and mechanical strength of nanocrystalline nickel films
19
作者 潘勇 周益春 +3 位作者 周兆锋 黄勇力 廖艳果 孙长庆 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第6期1225-1229,共5页
Nanocrystalline nickel films of 17-40 nm grain sizes were prepared using pulsejet electrodeposition. Structure, corrosion and lattice strain were analysed by transmission electron microscope, electrochemical workstati... Nanocrystalline nickel films of 17-40 nm grain sizes were prepared using pulsejet electrodeposition. Structure, corrosion and lattice strain were analysed by transmission electron microscope, electrochemical workstation and X-ray diffraction, revealing that with decreasing of grain size, the lattice strain, corrosion rate of the films are enhanced. The observations can be consistently understood in terms of the bond-order-length-strength correlation mechanism indicating that the shortened and strengthened bonds between the under-coordinated atoms modify the energy density and the atomic cohesive energy in the surface skins of the grains. The surface energy density gain is responsible for the residual atomic cohesive energy for the activation energy of corrosion. Additionally, a novel algorithm was proposed to extract the elastic-plastic properties of nickel films and results that the nickel film has much higher yield strength than bulk nickel. 展开更多
关键词 镍薄膜 脉冲喷射电沉积 抗腐蚀性 机械性质
下载PDF
Ultra-lightweight ceramic scaffolds with simultaneous improvement of pore interconnectivity and mechanical strength
20
作者 Ye Dong Annan Chen +5 位作者 Ting Yang Shuai Gao Shuning Liu Hongyi Jiang Yusheng Shi Chenglong Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第6期247-258,共12页
The high porosity and interconnectivity of scaffolds are critical for nutrient transmission in bone tis-sue engineering but usually lead to poor mechanical properties.Herein,a novel method that combines acid etching(A... The high porosity and interconnectivity of scaffolds are critical for nutrient transmission in bone tis-sue engineering but usually lead to poor mechanical properties.Herein,a novel method that combines acid etching(AE)with selective laser sintering(SLS)and reaction bonding(RB)of Al particles is pro-posed to realize highly improved porosity,interconnectivity,mechanical strength,and in vitro bioactivity in 3D Al_(2)O_(3) scaffolds.By controlling the oxidation and etching behaviors of Al particles,a tunable hol-low spherical feature can be obtained,which brings about the distinction in compressive response and fracture path.The prevention of microcrack propagation on the in situ formed hollow spheres results in unique near elastic buckling rather than traditional brittle fracture,allowing an unparalleled compressive strength of 3.72±0.17 MPa at a high porosity of 87.7%±0.4%and pore interconnectivity of 94.7%±0.4%.Furthermore,scaffolds with an optimized pore structure and superhydrophilic surface show excellent cell proliferation and adhesion properties.Our findings offer a promising strategy for the coexistence of out-standing mechanical and biological properties,with great potential for tissue engineering applications. 展开更多
关键词 Ceramic scaffolds Selective laser sintering Acid etching Hollow spherical feature mechanical strength In vitro bioactivity
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部