In the coastal environment,the co-occurrence of antibiotic and nanoplastic pollution is common.Investigating their individual and combined toxicity to marine organisms is of great necessity.In the present study,the re...In the coastal environment,the co-occurrence of antibiotic and nanoplastic pollution is common.Investigating their individual and combined toxicity to marine organisms is of great necessity.In the present study,the reproductive toxicity of sulfamethazine(SMZ)and nanoplastics(polystyrene,PS)via the dietary route on the spermatogenesis of marine medaka(Oryzias melastigma)was examined.After 30 d of dietary exposure,SMZ alone decreased the gonadosomatic index(GSI)value(~35%)and the proportion of undifferentiated type A spermatogonia(A_(und))(~40%),probably by disrupting the testicular sex hormone production,the spermatogenesis-related growth factor network and the balance of apoptosis.Individual exposure to PS did not affect the GSI value or the proportions of germ cells at different developmental stages,but dysregulated the expression of several spermatogenesis-related genes.Interestingly,the presence of PS alleviated the decreased GSI value caused by SMZ.This alleviation effect was achieved by enhancing the spermatogonia differentiation instead of reversing the suppressed self-renewal of A_(und),suggesting that the mixture of PS and SMZ could cause reproductive effects in a different way.These findings expand our knowledge of threats of ubiquitous antibiotic and nanoplastic pollution to fish reproduction and population.展开更多
Although 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p′-DDE), the major and most persistent metabolite of dichlorodiphenyltrichloroethane (DDT), was continually detected in wild fishes that showed abnormal...Although 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p′-DDE), the major and most persistent metabolite of dichlorodiphenyltrichloroethane (DDT), was continually detected in wild fishes that showed abnormal gonad development such as intersex, little is known about the impact of p,p′-DDE exposure on gonad development in fishes. To survey the effects of p,p′-DDE on gonadal development and gene expressions, male juvenile (20-d post hatch) Japanese medaka (Oryzias latipes) was exposed to 1, 5, 20, and 100 μg/L p,p′-DDE for two months. Increased hepatosomatic index (HSI) and decreased gonadosomatic index (GSI) were found in the p,p′-DDE-treated groups. Intersex was found in 100 μg/L p,p′-DDE exposure group, as well as 100 ng/L 17α-ethynylestradiol (EE2) group. By quantitative real-time RT-PCR, it was found that gene expressions of vitellogenins (VTG-1, VTG-2), choriogenins (CHG-H, CHG-L), and estrogen receptor α (ER-α) in the liver of the fish were significantly up-regulated by p,p′-DDE exposure. VTG-1 and VTG- 2 were recommended as the preferred biomarker for assessing anti-androgenic p,p′-DDE because they were the highest up-regulated among the genes and showed good dose-response relationship. The up-regulated ER-α suggested that a potential synergetic effect would occur when p,p′-DDE coexists with other ER-α-binding endocrine-disrupting chemicals (EDCs).展开更多
This study aims to evaluate the subacute toxic effects of oil under different treatments on marine organism by simulating natural contaminative processes. In this study, 120# (RMD15) fuel oil was selected as the pol...This study aims to evaluate the subacute toxic effects of oil under different treatments on marine organism by simulating natural contaminative processes. In this study, 120# (RMD15) fuel oil was selected as the pollutant and marine medaka (Oryzias melastigma) embryos as the experimental organism. The developmental toxicity of different volume concentrations (0.05%, 0.2%, 1% and 5%) of water-accommodated fractions, biologically-enhanced water-accommodated fractions, and chemically-enhanced water-accommodated fractions on the embryos in different exposure time (8, 15 and 22 d) were compared and the content of relevant polycyclic aromatic hydrocarbons (PAHs) was studied (in dispersion and in vivo). The subacute toxic effects were assessed in terms of antioxidant activities of enzymes (superoxide dismutase, catalase and glutathione S-transferase) and the blue sac disease (BSD) indexes.The results showed that the BSD indexes of the treatment groups were significantly higher than the respective control groups and showed positive correlations with both concentration and exposure time. The experiments with three antioxidant enzymes indicated that enzymatic activities of the embryos changed dramatically under the oxidation stress of petroleum hydrocarbons, especially after adding the dispersants. With the increase of petroleum hydrocarbon concentration and exposure time, the three enzymes showed different degrees of induction and inhibition effects.展开更多
Perfluorobutanesulfonate(PFBS)is an emerging pollutant capable of potently disrupting the sex and thyroid endocrine systems of teleosts.However,the hypoxic and temporal variation in PFBS endocrine disrupting toxicity ...Perfluorobutanesulfonate(PFBS)is an emerging pollutant capable of potently disrupting the sex and thyroid endocrine systems of teleosts.However,the hypoxic and temporal variation in PFBS endocrine disrupting toxicity remain largely unknown.In the present study,adult marine medaka were exposed to environmentally realistic concentrations of PFBS(0 and 10μg/L)under normoxia or hypoxia conditions for 7 days,aiming to explore the interactive behavior between PFBS and hypoxia.In addition,PFBS singular exposure was extended till 21days under normoxia to elucidate the time-course progression in PFBS toxicity.The results showed that hypoxia inhibited the growth and caused the suspension of egg spawn regardless of PFBS exposure.With regard to the sex endocrine system,7-day PFBS exposure led to an acute stimulation of transcriptional profiles in females,which,subsequently,recovered after the 21-day exposure.The potency of hypoxia to disturb the sex hormones was much stronger than PFBS.A remarkable increase in estradiol concentration was noted in medaka blood after hypoxia exposure.Changes in sex endocrinology of coexposed fish were largely determined by hypoxia,which drove the formation of an estrogenic environment.PFBS further enhanced the endocrine disrupting effects of hypoxia.However,the hepatic synthesis of vitellogenin and choriogenin,two commonly used sensitive biomarkers of estrogenic activity,failed to initiate in response to the estrogen stimulus.Compared to sex endocrine system,disturbances in thyroidal axis by PFBS or hypoxia were relatively mild.Overall,the present findings will advance our toxicological understanding about PFBS pollutant under the interference of hypoxia.展开更多
Neuropeptide Y receptor Y8(NPY8R)is a fish-specific receptor with two subtypes,NPY8AR and NPY8BR.Changes in expression levels during physiological processes or in vivo regulation after ventricular injection suggest th...Neuropeptide Y receptor Y8(NPY8R)is a fish-specific receptor with two subtypes,NPY8AR and NPY8BR.Changes in expression levels during physiological processes or in vivo regulation after ventricular injection suggest that NPY8BR plays an important role in feeding regulation;this has been found in only a few fish,at present.In order to better understand the physiological function of npy8br,especially in digestion,we used clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)technology to generate npy8br-/-japanese medaka(Oryzias latipes).We found that the deletion of npy8br in medaka larvae affected their feeding and digestion ability,ultimately affecting their growth.Specifically,npy8br deficiency in medaka larvae resulted in decreased feed intake and decreased expression levels of orexigenic genes(npy and agrp).npy8br-/-medaka larvae fed for 10 d(10th day of feeding)still had incompletely digested brine shrimp(Artemia nauplii)in the digestive tract 8 h after feeding,the messenger RNA(mRNA)expression levels of digestion-related genes(amy,lpl,ctra,and ctrb)were significantly decreased,and the activity of amylase,trypsin,and lipase also significantly decreased.The deletion of npy8br in medaka larvae inhibited the growth and significantly decreased the expression of growth-related genes(gh and igf1).Hematoxylin and eosin(H&E)sections of intestinal tissue showed that npy8br-/-medaka larvae had damaged intestine,thinned intestinal wall,and shortened intestinal villi.So far,this is the first npy8br gene knockout model established in fish and the first demonstration that npy8br plays an important role in digestion.展开更多
基金The National Natural Science Foundation of China under contract No.42106119the Department of Science and Technology of Fujian Province under contract Nos 2022J02052,2020J05175 and 2020J05178+1 种基金the Fujian Provincial Department of Ocean and Fisheries under contract No.FJHJF-L-2022-12the Yancheng Fishery High Quality Development Project under contract No.YCSCYJ2021023.
文摘In the coastal environment,the co-occurrence of antibiotic and nanoplastic pollution is common.Investigating their individual and combined toxicity to marine organisms is of great necessity.In the present study,the reproductive toxicity of sulfamethazine(SMZ)and nanoplastics(polystyrene,PS)via the dietary route on the spermatogenesis of marine medaka(Oryzias melastigma)was examined.After 30 d of dietary exposure,SMZ alone decreased the gonadosomatic index(GSI)value(~35%)and the proportion of undifferentiated type A spermatogonia(A_(und))(~40%),probably by disrupting the testicular sex hormone production,the spermatogenesis-related growth factor network and the balance of apoptosis.Individual exposure to PS did not affect the GSI value or the proportions of germ cells at different developmental stages,but dysregulated the expression of several spermatogenesis-related genes.Interestingly,the presence of PS alleviated the decreased GSI value caused by SMZ.This alleviation effect was achieved by enhancing the spermatogonia differentiation instead of reversing the suppressed self-renewal of A_(und),suggesting that the mixture of PS and SMZ could cause reproductive effects in a different way.These findings expand our knowledge of threats of ubiquitous antibiotic and nanoplastic pollution to fish reproduction and population.
基金supported by the National Natural Science Foundation of China(No.40632009,20607002)the National Basic Research Program(973)of China(No.2007CB407304).
文摘Although 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p′-DDE), the major and most persistent metabolite of dichlorodiphenyltrichloroethane (DDT), was continually detected in wild fishes that showed abnormal gonad development such as intersex, little is known about the impact of p,p′-DDE exposure on gonad development in fishes. To survey the effects of p,p′-DDE on gonadal development and gene expressions, male juvenile (20-d post hatch) Japanese medaka (Oryzias latipes) was exposed to 1, 5, 20, and 100 μg/L p,p′-DDE for two months. Increased hepatosomatic index (HSI) and decreased gonadosomatic index (GSI) were found in the p,p′-DDE-treated groups. Intersex was found in 100 μg/L p,p′-DDE exposure group, as well as 100 ng/L 17α-ethynylestradiol (EE2) group. By quantitative real-time RT-PCR, it was found that gene expressions of vitellogenins (VTG-1, VTG-2), choriogenins (CHG-H, CHG-L), and estrogen receptor α (ER-α) in the liver of the fish were significantly up-regulated by p,p′-DDE exposure. VTG-1 and VTG- 2 were recommended as the preferred biomarker for assessing anti-androgenic p,p′-DDE because they were the highest up-regulated among the genes and showed good dose-response relationship. The up-regulated ER-α suggested that a potential synergetic effect would occur when p,p′-DDE coexists with other ER-α-binding endocrine-disrupting chemicals (EDCs).
基金The National Natural Science Foundation of China under contract No.41276105/D0608
文摘This study aims to evaluate the subacute toxic effects of oil under different treatments on marine organism by simulating natural contaminative processes. In this study, 120# (RMD15) fuel oil was selected as the pollutant and marine medaka (Oryzias melastigma) embryos as the experimental organism. The developmental toxicity of different volume concentrations (0.05%, 0.2%, 1% and 5%) of water-accommodated fractions, biologically-enhanced water-accommodated fractions, and chemically-enhanced water-accommodated fractions on the embryos in different exposure time (8, 15 and 22 d) were compared and the content of relevant polycyclic aromatic hydrocarbons (PAHs) was studied (in dispersion and in vivo). The subacute toxic effects were assessed in terms of antioxidant activities of enzymes (superoxide dismutase, catalase and glutathione S-transferase) and the blue sac disease (BSD) indexes.The results showed that the BSD indexes of the treatment groups were significantly higher than the respective control groups and showed positive correlations with both concentration and exposure time. The experiments with three antioxidant enzymes indicated that enzymatic activities of the embryos changed dramatically under the oxidation stress of petroleum hydrocarbons, especially after adding the dispersants. With the increase of petroleum hydrocarbon concentration and exposure time, the three enzymes showed different degrees of induction and inhibition effects.
基金supported by the National Natural Science Foundation of China (Nos.22006159 and 31971236)the Research Grants Council Theme-Based Research Scheme (No.T21-602/16-R)+1 种基金the Natural Science Foundation of Hubei Province,China (No.2021CFA086)the State Key Laboratory of Freshwater Ecology and Biotechnology (No.2022FBZ02)。
文摘Perfluorobutanesulfonate(PFBS)is an emerging pollutant capable of potently disrupting the sex and thyroid endocrine systems of teleosts.However,the hypoxic and temporal variation in PFBS endocrine disrupting toxicity remain largely unknown.In the present study,adult marine medaka were exposed to environmentally realistic concentrations of PFBS(0 and 10μg/L)under normoxia or hypoxia conditions for 7 days,aiming to explore the interactive behavior between PFBS and hypoxia.In addition,PFBS singular exposure was extended till 21days under normoxia to elucidate the time-course progression in PFBS toxicity.The results showed that hypoxia inhibited the growth and caused the suspension of egg spawn regardless of PFBS exposure.With regard to the sex endocrine system,7-day PFBS exposure led to an acute stimulation of transcriptional profiles in females,which,subsequently,recovered after the 21-day exposure.The potency of hypoxia to disturb the sex hormones was much stronger than PFBS.A remarkable increase in estradiol concentration was noted in medaka blood after hypoxia exposure.Changes in sex endocrinology of coexposed fish were largely determined by hypoxia,which drove the formation of an estrogenic environment.PFBS further enhanced the endocrine disrupting effects of hypoxia.However,the hepatic synthesis of vitellogenin and choriogenin,two commonly used sensitive biomarkers of estrogenic activity,failed to initiate in response to the estrogen stimulus.Compared to sex endocrine system,disturbances in thyroidal axis by PFBS or hypoxia were relatively mild.Overall,the present findings will advance our toxicological understanding about PFBS pollutant under the interference of hypoxia.
基金supported by the National Natural Science Foundation of China(No.31972809)the Key Research&Development Program of Hubei Province(No.2022BBA0051),China.
文摘Neuropeptide Y receptor Y8(NPY8R)is a fish-specific receptor with two subtypes,NPY8AR and NPY8BR.Changes in expression levels during physiological processes or in vivo regulation after ventricular injection suggest that NPY8BR plays an important role in feeding regulation;this has been found in only a few fish,at present.In order to better understand the physiological function of npy8br,especially in digestion,we used clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)technology to generate npy8br-/-japanese medaka(Oryzias latipes).We found that the deletion of npy8br in medaka larvae affected their feeding and digestion ability,ultimately affecting their growth.Specifically,npy8br deficiency in medaka larvae resulted in decreased feed intake and decreased expression levels of orexigenic genes(npy and agrp).npy8br-/-medaka larvae fed for 10 d(10th day of feeding)still had incompletely digested brine shrimp(Artemia nauplii)in the digestive tract 8 h after feeding,the messenger RNA(mRNA)expression levels of digestion-related genes(amy,lpl,ctra,and ctrb)were significantly decreased,and the activity of amylase,trypsin,and lipase also significantly decreased.The deletion of npy8br in medaka larvae inhibited the growth and significantly decreased the expression of growth-related genes(gh and igf1).Hematoxylin and eosin(H&E)sections of intestinal tissue showed that npy8br-/-medaka larvae had damaged intestine,thinned intestinal wall,and shortened intestinal villi.So far,this is the first npy8br gene knockout model established in fish and the first demonstration that npy8br plays an important role in digestion.