Mefunidone (MFD), a pirfenidone analogue, has been suggested as a novel anti-fibrotic agent in preclinical research stage. In this work, we developed a sensitive and specified HPLC-UV method and validated it for the...Mefunidone (MFD), a pirfenidone analogue, has been suggested as a novel anti-fibrotic agent in preclinical research stage. In this work, we developed a sensitive and specified HPLC-UV method and validated it for the determination of MFD in rat plasma. A cost-effective protein precipitation method using methanol was used to process the plasma samples, and pirfenidone was employed as the internal standard (IS). Chromatographic separation was performed on an Agilent ZORBAX SB-Aq column (4.6 mm 250 mm, 5 μm) with a mobile phase consisting of 10 mM ammonium formate solution (pH 3.0, adjusted by 1.5%o formic acid)-acetonitrile-methanol (60:23:17, v/v/v) at a flow rate of 1.0 mL/min, and the samples were monitored at an ultraviolet wavelength of 245 nm. The retention times of MFD and IS were 5.5 and 7.8 min, respectively. The calibration curve was linear (r2 = 0.9997) between 0.1 and 20 pg/mL. The intra- and inter-day precisions were within 8.6%, and the bias of intra- and inter-accuracies of the method was between -4.2% and 6.5%. The method was successfully applied to pharmacokinetic study of MFD after i.g. and i.v. administration in rats. The elimination half-life was (3.41±0.81) h for i.g. administration and (2.26±0.87) h for i.v. administration. The absolute bioavailability of MFD in rat was 79.1%.展开更多
In the present study, a simple and reliable HPLC-UV method was developed for the determination of mefunidone. The bioanalytical specific procedure involved extraction of mefunidone from a 500-μL hepatic microsomal sy...In the present study, a simple and reliable HPLC-UV method was developed for the determination of mefunidone. The bioanalytical specific procedure involved extraction of mefunidone from a 500-μL hepatic microsomal system through protein precipitation by methanol. Chromatographic separation was achieved using an Agilent TC-C(18) column(4.6 mm×250 mm, 5 μm) with an isocratic mobile phase consisting of 10 mM ammonium formate(pH 2.9, later adjusted by using 10% formic acid)–acetonitrile(70:30, v/v) at a flow rate of 1.0 mL/min. The UV detection wavelength was set at 245 nm. Mefunidone and pirfenidone(PFD, internal standard, IS) were eluted at 6.0 and 9.7 min, separately, with the total running time of 12 min. According to US Food and Drug Administration bioanalytical guidelines, method validation was performed, and the results met the acceptance criteria in details. The calibration curve of mefunidone in liver microsomes was linear over the concentration range of 0.5–16 μg.mL^(–1). Intra-and inter-run precisions of mefunidone were less than 9.0%, and the biases were within ±10.0%. After incubation of mefunidone in liver microsomes, this method was successfully applied to the pharmacokinetic study.展开更多
基金National Natural Science Foundation of China(Grant No.81573498)supported by Nanxin Pharmaceutical Co.,Ltd.(Guangdong,China)
文摘Mefunidone (MFD), a pirfenidone analogue, has been suggested as a novel anti-fibrotic agent in preclinical research stage. In this work, we developed a sensitive and specified HPLC-UV method and validated it for the determination of MFD in rat plasma. A cost-effective protein precipitation method using methanol was used to process the plasma samples, and pirfenidone was employed as the internal standard (IS). Chromatographic separation was performed on an Agilent ZORBAX SB-Aq column (4.6 mm 250 mm, 5 μm) with a mobile phase consisting of 10 mM ammonium formate solution (pH 3.0, adjusted by 1.5%o formic acid)-acetonitrile-methanol (60:23:17, v/v/v) at a flow rate of 1.0 mL/min, and the samples were monitored at an ultraviolet wavelength of 245 nm. The retention times of MFD and IS were 5.5 and 7.8 min, respectively. The calibration curve was linear (r2 = 0.9997) between 0.1 and 20 pg/mL. The intra- and inter-day precisions were within 8.6%, and the bias of intra- and inter-accuracies of the method was between -4.2% and 6.5%. The method was successfully applied to pharmacokinetic study of MFD after i.g. and i.v. administration in rats. The elimination half-life was (3.41±0.81) h for i.g. administration and (2.26±0.87) h for i.v. administration. The absolute bioavailability of MFD in rat was 79.1%.
基金The National Natural Science Foundation of China(Grant No.81302819),the National Natural Science Foundation of China(Grant No.C0709-31201056)the Fundamental Research Funds for the Central Universities of China(Grant No.7601110179)the Fundamental Research Funds for the Central south Universities of China(Grant No.2016zzts494)
文摘In the present study, a simple and reliable HPLC-UV method was developed for the determination of mefunidone. The bioanalytical specific procedure involved extraction of mefunidone from a 500-μL hepatic microsomal system through protein precipitation by methanol. Chromatographic separation was achieved using an Agilent TC-C(18) column(4.6 mm×250 mm, 5 μm) with an isocratic mobile phase consisting of 10 mM ammonium formate(pH 2.9, later adjusted by using 10% formic acid)–acetonitrile(70:30, v/v) at a flow rate of 1.0 mL/min. The UV detection wavelength was set at 245 nm. Mefunidone and pirfenidone(PFD, internal standard, IS) were eluted at 6.0 and 9.7 min, separately, with the total running time of 12 min. According to US Food and Drug Administration bioanalytical guidelines, method validation was performed, and the results met the acceptance criteria in details. The calibration curve of mefunidone in liver microsomes was linear over the concentration range of 0.5–16 μg.mL^(–1). Intra-and inter-run precisions of mefunidone were less than 9.0%, and the biases were within ±10.0%. After incubation of mefunidone in liver microsomes, this method was successfully applied to the pharmacokinetic study.