For drugs obeying parallel first-order and Michaelis-Menten elimination kinetics,mathematical analysis concerning the optimum dosage regimen of intravenous infusion is conducted and following equations are derived:whe...For drugs obeying parallel first-order and Michaelis-Menten elimination kinetics,mathematical analysis concerning the optimum dosage regimen of intravenous infusion is conducted and following equations are derived:where Xo is the intravenous loading dose,Cb the plasma concentration level desired in clinical therapy,V the apparent distribution volume,k0 the rate constant of intravenouns infusion,K the first-order elimination rate constant,Vm the theoretical maximum rate of the Michaelis-Menten elimination process,Km the Michaelis constant.From this dosage regimen,plasma level maintains a constant Cb during the administration period.When K=0 the dosage regimen above is also suitable for drugs obeying Michaelis-Menten elimination kinetics.展开更多
The integration of Michaelis-Menten kinetics results in a trancedental equation. The results are not in a form that is readily usable. A more usable form of the model solutions is developed. This was accomplished by u...The integration of Michaelis-Menten kinetics results in a trancedental equation. The results are not in a form that is readily usable. A more usable form of the model solutions is developed. This was accomplished by using Taylor series expansion of dimensionless concentration u in terms of its derivatives. The infinite series expression for dimensionless concentration is given. It can be seen that for times t < , the Taylor series expression evaluated near the origin up to the third derivative is a reasonable representation of the integrated solution. More terms in the Taylor series expression can be added to suit the application. It can vary with the apparent volume, dosage, enzyme concentration, Michaelis constant and the desired accuracy level needed. The single compartment model solution was obtained by the method of Laplace transform. It can be seen from Figure 2 that the dimensionless drug concentration in the compartment goes through a maxima. The curve is convex throughout the absorption and elimination processes. The drug gets completely depleted after a said time. The curve is asymmetrical with a right skew. The systems under absorption with elimination that obey the kinetics that can be represented by a set of reactions in circle were considered. A system of simple reactions in circle was taken into account. The concentration profile of the reactants were obtained by the method of Laplace transforms. The conditions when subcritical damped oscillations can be expected are derived. A model was developed for cases when absorption kinetics exhibit subcritical damped oscillations. The solution was developed by the method of Laplace transforms. The solution for dimensionless concentration of the drug in single compartment for different values of rate constants and dimensionless frequency are shown in Figures 6-9. The drug profile reaches a maximum and drops to zero concen-tration after a said time. The fluctuations in concentration depends on the dimensionless frequency resulting from the subcritical damped oscillations during absorption. At low frequencies the fluctuations are absent. As the frequency is increased the fluctuations in concentration are pronounced. The fre-quency of fluctuations were found to increase with increase in frequency of oscillations during ab-sorption.展开更多
This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation contain...This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.展开更多
In this paper, we investigated stability and bifurcation behaviors of a predator-prey model with Michaelis-Menten type prey harvesting. Sufficient conditions for local and global asymptotically stability of the interi...In this paper, we investigated stability and bifurcation behaviors of a predator-prey model with Michaelis-Menten type prey harvesting. Sufficient conditions for local and global asymptotically stability of the interior equilibrium point were established. Some critical threshold conditions for transcritical bifurcation, saddle-node bifurcation and Hopf bifurcation were explored analytically. Furthermore, It should be stressed that the fear factor could not only reduce the predator density, but also affect the prey growth rate. Finally, these theoretical results revealed that nonlinear Michaelis-Menten type prey harvesting has played an important role in the dynamic relationship, which also in turn proved the validity of theoretical derivation.展开更多
文摘For drugs obeying parallel first-order and Michaelis-Menten elimination kinetics,mathematical analysis concerning the optimum dosage regimen of intravenous infusion is conducted and following equations are derived:where Xo is the intravenous loading dose,Cb the plasma concentration level desired in clinical therapy,V the apparent distribution volume,k0 the rate constant of intravenouns infusion,K the first-order elimination rate constant,Vm the theoretical maximum rate of the Michaelis-Menten elimination process,Km the Michaelis constant.From this dosage regimen,plasma level maintains a constant Cb during the administration period.When K=0 the dosage regimen above is also suitable for drugs obeying Michaelis-Menten elimination kinetics.
文摘The integration of Michaelis-Menten kinetics results in a trancedental equation. The results are not in a form that is readily usable. A more usable form of the model solutions is developed. This was accomplished by using Taylor series expansion of dimensionless concentration u in terms of its derivatives. The infinite series expression for dimensionless concentration is given. It can be seen that for times t < , the Taylor series expression evaluated near the origin up to the third derivative is a reasonable representation of the integrated solution. More terms in the Taylor series expression can be added to suit the application. It can vary with the apparent volume, dosage, enzyme concentration, Michaelis constant and the desired accuracy level needed. The single compartment model solution was obtained by the method of Laplace transform. It can be seen from Figure 2 that the dimensionless drug concentration in the compartment goes through a maxima. The curve is convex throughout the absorption and elimination processes. The drug gets completely depleted after a said time. The curve is asymmetrical with a right skew. The systems under absorption with elimination that obey the kinetics that can be represented by a set of reactions in circle were considered. A system of simple reactions in circle was taken into account. The concentration profile of the reactants were obtained by the method of Laplace transforms. The conditions when subcritical damped oscillations can be expected are derived. A model was developed for cases when absorption kinetics exhibit subcritical damped oscillations. The solution was developed by the method of Laplace transforms. The solution for dimensionless concentration of the drug in single compartment for different values of rate constants and dimensionless frequency are shown in Figures 6-9. The drug profile reaches a maximum and drops to zero concen-tration after a said time. The fluctuations in concentration depends on the dimensionless frequency resulting from the subcritical damped oscillations during absorption. At low frequencies the fluctuations are absent. As the frequency is increased the fluctuations in concentration are pronounced. The fre-quency of fluctuations were found to increase with increase in frequency of oscillations during ab-sorption.
文摘This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.
文摘In this paper, we investigated stability and bifurcation behaviors of a predator-prey model with Michaelis-Menten type prey harvesting. Sufficient conditions for local and global asymptotically stability of the interior equilibrium point were established. Some critical threshold conditions for transcritical bifurcation, saddle-node bifurcation and Hopf bifurcation were explored analytically. Furthermore, It should be stressed that the fear factor could not only reduce the predator density, but also affect the prey growth rate. Finally, these theoretical results revealed that nonlinear Michaelis-Menten type prey harvesting has played an important role in the dynamic relationship, which also in turn proved the validity of theoretical derivation.