Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of...Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of CaO-SiO2 slag for boron removal was characterized by establishing the thermodynamic relationship between the distribution coefficient of boron (LB) and the activities of SiO2 and CaO. The experimental results show that the distribution coefficient and the removal efficiency of boron are greatly improved with the increase of CaO proportion in the slag. The maximal value of LB reaches 1.57 with a slag composition of 60%CaO-40%SiO2 (mass fraction). The boron content in the refined silicon is reduced from 18×10^-6 to 1.8×10^-6 using slag refining at 1600 ℃ for 3 h with a CaO-SiO2/MG-Si ratio of 2.5, and the removal efficiency of boron reaches 90%.展开更多
Gas blowing is a valid method to remove the impurities from metallurgical grade silicon(MG-Si) melt.The thermodynamic behavior of impurities Fe,Al,Ca,Ti,Cu,C,B and P in MG-Si was studied in the process of O2 blowing...Gas blowing is a valid method to remove the impurities from metallurgical grade silicon(MG-Si) melt.The thermodynamic behavior of impurities Fe,Al,Ca,Ti,Cu,C,B and P in MG-Si was studied in the process of O2 blowing.The removal efficiencies of impurities in MG-Si were investigated using O2 blowing in ladle.It is found that the removal efficiencies are higher than 90% for Ca and Al and nearly 50% for B and Ti.The morphology of inclusions was analyzed and the phases Al3Ni,NiSi2 and Al3Ni were confirmed in MG-Si by X-ray diffraction.It was found that SiB4 exists in Si?B binary system.The chemical composition of inclusions in MG-Si before and after refining was analyzed by SEM-EDS.It is found that the amount of white inclusion reduces for the removal of most Al and Ca in the forms of molten slag inclusion and the contents of Fe,Ni and Mn in inclusion increase for their inertia in silicon melt with O2 blowing.展开更多
A new purification process was developed to remove impurities in metallurgical grade silicon (MG-Si) by electromagnetic induction slag melting (EISM). Vacuum melting furnace was used to purify boron in different s...A new purification process was developed to remove impurities in metallurgical grade silicon (MG-Si) by electromagnetic induction slag melting (EISM). Vacuum melting furnace was used to purify boron in different slag systems. The results show that the removal effect in SiO2-CaO-Al2O3 systems is better than that in other slag systems by EISM. The boron content in MG-Si is successfully reduced from 1.5× 10^-5 to 0.2× 10^-5 during EISM at 1 823 K for 2 h. Meanwhile, Al, Ca and Mg elements in MG-Si are also well removed and their removal efficiencies reach 85.0%, 50.2% and 66.7%, respectively, which indicates that EISM is very effective to remove boron and metal impurities in silicon.展开更多
The removal of phosphorus in metallurgical grade silicon (MG-Si) by water vapor carried with high purity argon was examined. The effect of the nozzle types, refining time, refining temperature, refining gas temperat...The removal of phosphorus in metallurgical grade silicon (MG-Si) by water vapor carried with high purity argon was examined. The effect of the nozzle types, refining time, refining temperature, refining gas temperature and refining gas flow rate on the phosphorus removed was investigated by the self-designed gas blowing device. The optimal refining conditions are nozzle type of holes at bottom and side, refining time of 3 h, refining temperature of 1793 K, refining gas temperature of 373 K, refining gas flow rate of 2 L/min. Under these optimal conditions, the phosphorus content in MG-Si is reduced from 94×10^-6 initially to 11×10-6 (mass fraction), which indicates that gas blowing refining is very effective to remove phosphorus in MG-Si.展开更多
The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size le...The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size less than 0.1 mm was most effective for acid leaching; the extraction yield of impurities was increased by 9% with HF leaching compared with HCl leaching and HNO3 leaching, and increased by 7% with ultrasonic stirring compared with mechanical stirring. The principle of hydrometallurgical purification of metallurgical grade silicon under ultrasonic fields was also discussed.展开更多
In this paper, the kinetics of pressure leaching for purification of metallurgical grade silicon with hydrochloric acid was investigated. The effects of particle size, temperature, total pressure, and concentration of...In this paper, the kinetics of pressure leaching for purification of metallurgical grade silicon with hydrochloric acid was investigated. The effects of particle size, temperature, total pressure, and concentration of hydrochloric acid on the kinetics and mechanism of iron removal were studied. It was found that the reaction kinetic model followed the shrinking core model, and the apparent activation energy of the leaching reaction was 46.908 kJ/mol. And the apparent reaction order of iron removal with pressure leaching was 0.899. The kinetic equation was obtained and the mathematical model of iron removal from metallurgical grade silicon (MG-Si) was given as follows:The values calculated from the equation were consistent with the experimental results.展开更多
In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural netwo...In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural network was used to model the relationship between slag compositions and boron content in SiO2-CaO-Na3 AlF6-CaSiO3 slag system.The BP neural network predicted error is below 2.38%.The prediction results show that the slag composition has a significant influence on boron removal.Increasing the basicity of slag by adding CaO or Na3 AlF6 to CaSiO3-based slag could contribute to the boron removal,and the addition of Na3 AlF6 has a better removal effect in comparison with the addition of CaO.The oxidizing characteristic of CaSiO3 results in the ineffective removal with the addition of SiO2.The increase of oxygen potential(pO2)in the CaO-Na3 AlF6-CaSiO3 slag system by varying the SiO2 proportion can also contribute to the boron removal in silicon ingot.The best slag composition to remove boron was predicted by BP neural network using genetic algorithm(GA).The predicted results show that the mass fraction of boron in silicon reduces from 14.0000×10-6 to0.4366×10-6 after slag melting using 23.12%SiO2-10.44%CaO-16.83%Na3 AlF6-49.61%CaSiO3 slag system,close to the experimental boron content in silicon which is below 0.5×10-6.展开更多
In the experiment, acid leaching under an ultrasonic field (20 kHz, 80 W) was used to remove AI, Fe, and Ti impurities in metallurgical grade silicon (MG-Si). The effects of the acid leaching process parameters, i...In the experiment, acid leaching under an ultrasonic field (20 kHz, 80 W) was used to remove AI, Fe, and Ti impurities in metallurgical grade silicon (MG-Si). The effects of the acid leaching process parameters, including the particle size of silicon, the acid type (HC1, HNO3, HF,) and the leaching time on the purification of MG-Si were investigated. The results show that HC1 leaching, an initial size of 0.1 mm for the silicon particles, and 8 h of leaching time are the optimum parameters to purify MG-Si. The acid leaching process under an ultrasonic field is more effective than the acid leaching under magnetic stirring, the mechanism of which is preliminarily discussed.展开更多
Solar cells are currently fabricated from a variety of silicon-based materials.Now the major silicon material for solar cells is the scrap of electronic grade silicon(EG-Si).But in the current market it is difficult...Solar cells are currently fabricated from a variety of silicon-based materials.Now the major silicon material for solar cells is the scrap of electronic grade silicon(EG-Si).But in the current market it is difficult to secure a steady supply of this material.Therefore,alternative production processes are needed to increase the feedstock.In this paper,EBM is used to purify silicon.MG-Si particles after leaching with an initial purity of 99.88%in mass as starting materials were used.The final purity of the silicon disk obtained after EBM was above 99.995%in mass.This result demonstrates that EBM can effectively remove impurities from silicon.This paper mainly studies the impurity distribution in the silicon disk after EBM.展开更多
The impurities Al,Ca,Ti,B,P etc in metallurgical grade silicon(MG-Si)can be effectively removed by refining using molten slag based CaO-SiO_2,and it is especially effective for boron removal.The experiments of boron r...The impurities Al,Ca,Ti,B,P etc in metallurgical grade silicon(MG-Si)can be effectively removed by refining using molten slag based CaO-SiO_2,and it is especially effective for boron removal.The experiments of boron removal were studied using CaO-SiO_2 binary slag in induction furnace.The results showed that the distribution coefficient of boron(L_B)between slag and silicon increased with more proportion of CaO/SiO_2(mass%).It was advantaged to boron removal for higher basicity of slag,so the boron in MG-Si was reduced from 18ppmw to 1.4ppmw with the addition of Li_2O and K_2O to CaO-SiO_2 slag.The proportion of SiO_2 in slag affected the oxidizing capacity of slag,which reduced the efficiency of boron removal.展开更多
A new method about purification of metallurgical grade silicon (MG-Si) by a combination of Si-Al solvent refining andgas blowing treatment was proposed. The morphologies and transformation of impurity phases, especi...A new method about purification of metallurgical grade silicon (MG-Si) by a combination of Si-Al solvent refining andgas blowing treatment was proposed. The morphologies and transformation of impurity phases, especially for boron and iron in Si-Al melt were investigated during Ar-H2 gas blowing treatment. The mechanism of boron removal was discussed. The resultsindicate that gas blowing can refine grain size and increase nucleation of the primary Si. Boron can be effectively removed fromMG-Si using the Ar-H2 gas blowing technique during the Si-Al solvent refining. Compared with the sample without gas blowing,the removal efficiency of boron increases from 45.83% to 74.73% after 2.5 h gas blowing. The main impurity phases containingboron are in the form of TiB2, AlB2 and VB compounds and iron-containing one is in the form of β-Al5FeSi intermetallic compound.Part of boron combines [H] to transform into gas BxHy (BH, BH2) and diffuses towards the surface of the melt and is volatilized byAr-H2 gas blowing treatment under electromagnetic stirring.展开更多
基金Projects (51104080,u1137601) supported by the National Natural Science Foundation of ChinaProject (14118557) supported by the Personnel Training Foundation of Kunming University of Science and Technology in China
文摘Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of CaO-SiO2 slag for boron removal was characterized by establishing the thermodynamic relationship between the distribution coefficient of boron (LB) and the activities of SiO2 and CaO. The experimental results show that the distribution coefficient and the removal efficiency of boron are greatly improved with the increase of CaO proportion in the slag. The maximal value of LB reaches 1.57 with a slag composition of 60%CaO-40%SiO2 (mass fraction). The boron content in the refined silicon is reduced from 18×10^-6 to 1.8×10^-6 using slag refining at 1600 ℃ for 3 h with a CaO-SiO2/MG-Si ratio of 2.5, and the removal efficiency of boron reaches 90%.
基金Projects(51104080,u1137601) supported by the National Natural Science Foundation of ChinaProject(2009CD027) supported by the Natural Science Foundation of Yunnan Province,ChinaProject(14118557) supported by the Personnel Training Foundation of Kunming University of Science and Technology,China
文摘Gas blowing is a valid method to remove the impurities from metallurgical grade silicon(MG-Si) melt.The thermodynamic behavior of impurities Fe,Al,Ca,Ti,Cu,C,B and P in MG-Si was studied in the process of O2 blowing.The removal efficiencies of impurities in MG-Si were investigated using O2 blowing in ladle.It is found that the removal efficiencies are higher than 90% for Ca and Al and nearly 50% for B and Ti.The morphology of inclusions was analyzed and the phases Al3Ni,NiSi2 and Al3Ni were confirmed in MG-Si by X-ray diffraction.It was found that SiB4 exists in Si?B binary system.The chemical composition of inclusions in MG-Si before and after refining was analyzed by SEM-EDS.It is found that the amount of white inclusion reduces for the removal of most Al and Ca in the forms of molten slag inclusion and the contents of Fe,Ni and Mn in inclusion increase for their inertia in silicon melt with O2 blowing.
基金Project (50674018) supported by the National Natural Science Foundation of China
文摘A new purification process was developed to remove impurities in metallurgical grade silicon (MG-Si) by electromagnetic induction slag melting (EISM). Vacuum melting furnace was used to purify boron in different slag systems. The results show that the removal effect in SiO2-CaO-Al2O3 systems is better than that in other slag systems by EISM. The boron content in MG-Si is successfully reduced from 1.5× 10^-5 to 0.2× 10^-5 during EISM at 1 823 K for 2 h. Meanwhile, Al, Ca and Mg elements in MG-Si are also well removed and their removal efficiencies reach 85.0%, 50.2% and 66.7%, respectively, which indicates that EISM is very effective to remove boron and metal impurities in silicon.
基金Project(51074043)supported by the National Natural Science Foundation of ChinaProject(2011BAE03B01)supported by the National Key Technology R&D Program of China
文摘The removal of phosphorus in metallurgical grade silicon (MG-Si) by water vapor carried with high purity argon was examined. The effect of the nozzle types, refining time, refining temperature, refining gas temperature and refining gas flow rate on the phosphorus removed was investigated by the self-designed gas blowing device. The optimal refining conditions are nozzle type of holes at bottom and side, refining time of 3 h, refining temperature of 1793 K, refining gas temperature of 373 K, refining gas flow rate of 2 L/min. Under these optimal conditions, the phosphorus content in MG-Si is reduced from 94×10^-6 initially to 11×10-6 (mass fraction), which indicates that gas blowing refining is very effective to remove phosphorus in MG-Si.
基金supported by the National Natural Science Foundation of China (No. 50674018)
文摘The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size less than 0.1 mm was most effective for acid leaching; the extraction yield of impurities was increased by 9% with HF leaching compared with HCl leaching and HNO3 leaching, and increased by 7% with ultrasonic stirring compared with mechanical stirring. The principle of hydrometallurgical purification of metallurgical grade silicon under ultrasonic fields was also discussed.
基金financially supported by the Program for New Century Excellent Talents of Ministry of Education of China (No.NCET-07-0387)the National Natural Science Foundation of China (No.51064014)
文摘In this paper, the kinetics of pressure leaching for purification of metallurgical grade silicon with hydrochloric acid was investigated. The effects of particle size, temperature, total pressure, and concentration of hydrochloric acid on the kinetics and mechanism of iron removal were studied. It was found that the reaction kinetic model followed the shrinking core model, and the apparent activation energy of the leaching reaction was 46.908 kJ/mol. And the apparent reaction order of iron removal with pressure leaching was 0.899. The kinetic equation was obtained and the mathematical model of iron removal from metallurgical grade silicon (MG-Si) was given as follows:The values calculated from the equation were consistent with the experimental results.
基金financially supported by the National High Technology Research and Development Program of China (No.2012AA062302)。
文摘In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural network was used to model the relationship between slag compositions and boron content in SiO2-CaO-Na3 AlF6-CaSiO3 slag system.The BP neural network predicted error is below 2.38%.The prediction results show that the slag composition has a significant influence on boron removal.Increasing the basicity of slag by adding CaO or Na3 AlF6 to CaSiO3-based slag could contribute to the boron removal,and the addition of Na3 AlF6 has a better removal effect in comparison with the addition of CaO.The oxidizing characteristic of CaSiO3 results in the ineffective removal with the addition of SiO2.The increase of oxygen potential(pO2)in the CaO-Na3 AlF6-CaSiO3 slag system by varying the SiO2 proportion can also contribute to the boron removal in silicon ingot.The best slag composition to remove boron was predicted by BP neural network using genetic algorithm(GA).The predicted results show that the mass fraction of boron in silicon reduces from 14.0000×10-6 to0.4366×10-6 after slag melting using 23.12%SiO2-10.44%CaO-16.83%Na3 AlF6-49.61%CaSiO3 slag system,close to the experimental boron content in silicon which is below 0.5×10-6.
基金supported by the National Natural Science Foundation of China(No.50674018)
文摘In the experiment, acid leaching under an ultrasonic field (20 kHz, 80 W) was used to remove AI, Fe, and Ti impurities in metallurgical grade silicon (MG-Si). The effects of the acid leaching process parameters, including the particle size of silicon, the acid type (HC1, HNO3, HF,) and the leaching time on the purification of MG-Si were investigated. The results show that HC1 leaching, an initial size of 0.1 mm for the silicon particles, and 8 h of leaching time are the optimum parameters to purify MG-Si. The acid leaching process under an ultrasonic field is more effective than the acid leaching under magnetic stirring, the mechanism of which is preliminarily discussed.
基金Project supported by the National Natural Science Foundation of China(No.50674018)
文摘Solar cells are currently fabricated from a variety of silicon-based materials.Now the major silicon material for solar cells is the scrap of electronic grade silicon(EG-Si).But in the current market it is difficult to secure a steady supply of this material.Therefore,alternative production processes are needed to increase the feedstock.In this paper,EBM is used to purify silicon.MG-Si particles after leaching with an initial purity of 99.88%in mass as starting materials were used.The final purity of the silicon disk obtained after EBM was above 99.995%in mass.This result demonstrates that EBM can effectively remove impurities from silicon.This paper mainly studies the impurity distribution in the silicon disk after EBM.
基金Items Sponsored by the National Natural Science Foundation of China(51104080,u1137601)the Natural Science Foundation of Yunnan Province(2009CD027)the Educational Science Foundation of Yunnan Province(2010Z010)
文摘The impurities Al,Ca,Ti,B,P etc in metallurgical grade silicon(MG-Si)can be effectively removed by refining using molten slag based CaO-SiO_2,and it is especially effective for boron removal.The experiments of boron removal were studied using CaO-SiO_2 binary slag in induction furnace.The results showed that the distribution coefficient of boron(L_B)between slag and silicon increased with more proportion of CaO/SiO_2(mass%).It was advantaged to boron removal for higher basicity of slag,so the boron in MG-Si was reduced from 18ppmw to 1.4ppmw with the addition of Li_2O and K_2O to CaO-SiO_2 slag.The proportion of SiO_2 in slag affected the oxidizing capacity of slag,which reduced the efficiency of boron removal.
基金Projects(51404231,51474201)supported by the National Natural Science Foundation of ChinaProject(1508085QE81)supported by Anhui Provincial Natural Science Foundation,China+1 种基金Project(2014M561846)supported by China Postdoctoral Science FoundationProject(2012065)supported by 100 Talent Program of Chinese Academy of Sciences
文摘A new method about purification of metallurgical grade silicon (MG-Si) by a combination of Si-Al solvent refining andgas blowing treatment was proposed. The morphologies and transformation of impurity phases, especially for boron and iron in Si-Al melt were investigated during Ar-H2 gas blowing treatment. The mechanism of boron removal was discussed. The resultsindicate that gas blowing can refine grain size and increase nucleation of the primary Si. Boron can be effectively removed fromMG-Si using the Ar-H2 gas blowing technique during the Si-Al solvent refining. Compared with the sample without gas blowing,the removal efficiency of boron increases from 45.83% to 74.73% after 2.5 h gas blowing. The main impurity phases containingboron are in the form of TiB2, AlB2 and VB compounds and iron-containing one is in the form of β-Al5FeSi intermetallic compound.Part of boron combines [H] to transform into gas BxHy (BH, BH2) and diffuses towards the surface of the melt and is volatilized byAr-H2 gas blowing treatment under electromagnetic stirring.