Organic light emitting diodes employing magnesium doped electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride (Mg:PTCDA) as electron injection layer and silver as cathode were demonstrated. As compared ...Organic light emitting diodes employing magnesium doped electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride (Mg:PTCDA) as electron injection layer and silver as cathode were demonstrated. As compared to Mg : Ag cathode, the combination of the Mg : PTCDA layer and silver provided enhanced electron injection into tris (8- quinolinolato) aluminium. The device with 1 : 2 Mg : PTCDA and Ag showed an increase of about 12% in the maximum current efficiency, mainly due to the improved hole-electron balance, and an increase of about 28% in the maximum power efficiency, as compared to the control device using Mg : Ag cathode. The properties of Mg : PTCDA composites were studied as well.展开更多
文摘Organic light emitting diodes employing magnesium doped electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride (Mg:PTCDA) as electron injection layer and silver as cathode were demonstrated. As compared to Mg : Ag cathode, the combination of the Mg : PTCDA layer and silver provided enhanced electron injection into tris (8- quinolinolato) aluminium. The device with 1 : 2 Mg : PTCDA and Ag showed an increase of about 12% in the maximum current efficiency, mainly due to the improved hole-electron balance, and an increase of about 28% in the maximum power efficiency, as compared to the control device using Mg : Ag cathode. The properties of Mg : PTCDA composites were studied as well.