The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show th...The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5) eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5) phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2) phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5) phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with the α-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2) phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5) phase,exhibits better corrosion resistance performance.展开更多
The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were invest...The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were investigated. The optimum T6 heat treatments for sand-cast Mg-10Gd-3Y-0.5Zr alloy are (525 ℃, 12 h+225 ℃, 14 h) and (525 ℃, 12 h+250 ℃, 12 h) according to age hardening curve and mechanical properties, respectively. The ultimate tensile strength, yield strength and elongation of the Mg-10Gd-3Y-0.5Zr alloy treated by the two optimum T6 processes are 339.9 MPa, 251.6 MPa, 1.5%and 359.6 MPa, 247.3 MPa, 2.7%, respectively. The tensile fracture mode of peak-aged Mg-10Gd-3Y-0.5Zr alloy is transgranular quasi-cleavage fracture.展开更多
Influence of multi-cycle cryogenic treatment and tensile temperature on microstructure, mechanical properties and fracture mechanism of as-extruded Mg-10Gd-3Y-0.5Zr magnesium alloy was investigated. The results show t...Influence of multi-cycle cryogenic treatment and tensile temperature on microstructure, mechanical properties and fracture mechanism of as-extruded Mg-10Gd-3Y-0.5Zr magnesium alloy was investigated. The results show that there have no significant changes in tensile properties of the tested alloy after 10 d in liquid nitrogen immersion or 10 cycles of high-low temperature treatment at all test temperatures. The room temperature ultimate tensile strength increases from 398 MPa to 417 MPa after 20 cycles of high-low temperature treatments. Compared with the room temperature, the tested alloys exhibit higher tensile properties at low temperatures. At -196 °C, the yield strength and ultimate tensile strength of the as-extruded-T5 Mg-10Gd-3Y-0.5Zr alloy are 349 MPa and 506 MPa, respectively, increasing by about 18% and 27%, respectively. The transgranular cleavage fracture mechanism is observed at room temperature, while at low temperatures both ductile fracture and cleavage fracture behaviors coexist.展开更多
The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates ...The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates the mean grain size of 15 μm for the extruded and 100 μm for the as-cast Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys. The corrosion morphology of as-cast sample shows pitting corrosion and little filiform corrosion, but that of the extruded sample shows pitting corrosion at the initial stage. The corrosion rate of extruded sample is higher than that of as-cast Mg-5Y-7Gd-1Nd-0.5Zr alloy according to the immersion test. The second phases containing RE acting as cathodes improve the corrosion properties. The corrosion potentials of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr alloys are -1.658 V and -1.591 V, respectively. The origins of the distinctive corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr Mg alloys were discussed.展开更多
In this study,the microstructure evolution of semi-solid Mg-10Gd-3Y-0.5Zr alloy during isothermal heat treatment has been investigated.The results show that primary particles coarsen continuously during the holding.Co...In this study,the microstructure evolution of semi-solid Mg-10Gd-3Y-0.5Zr alloy during isothermal heat treatment has been investigated.The results show that primary particles coarsen continuously during the holding.Coarsening rate decreases with the increase of isothermal temperature.When isothermal temperature increases from 600℃ to 620℃,the dominant mechanism for coarsening changes from particle coalescence to Ostwald ripening.Equiaxed as-cast microstructure is beneficial to the semi-solid microstructure after isothermal heat treatment,which brings about the refinement and spheroidization of primary particles,and shortening of holding time.Significant modification of second phases can also be achieved after isothermal heat treatment,due to its unique solidification process.The optimum processing parameters for Mg-10Gd-3Y-0.5Zr alloy in isothermal heat treatment are isothermal temperature of 610℃-620℃ and holding time of 20-40 min.展开更多
Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on ...Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent.展开更多
The corrosion behaviors of low-pressure sand cast Mg-10Gd-3Y-0.5Zr(wt.%)alloys in as-cast,solution treated(T4)and aged(T6)conditions were studied by means of immersion test and electrochemical measurements in 5wt.%NaC...The corrosion behaviors of low-pressure sand cast Mg-10Gd-3Y-0.5Zr(wt.%)alloys in as-cast,solution treated(T4)and aged(T6)conditions were studied by means of immersion test and electrochemical measurements in 5wt.%NaCl solution saturated with Mg(OH)_(2).It was observed that the corrosion rate in the T4 condition was lower than that of the as-cast and T6 conditions by both sand casting and permanent mold casting with the same order of as-cast>T6>T4;while the corrosion resistance of the permanent mold casting is superior to the sand casting.The morphologies of the corrosion products are similar porous structures consisting of tiny erect flakes perpendicular to the corroded surface of the alloy,irrespective of the heat treatment conditions.Especially,the corrosion film in T4 condition is more compact than that in the other two conditions.In addition,the severer corrosion happening to the as-cast condition is correlated with the galvanic corrosion between the matrix and the eutectic compounds;while improved corrosion resistance for the T4 and T6 conditions is ascribed to the dissolution of the secondary eutectic compounds.The measured corrosion current densities of Mg-10Gd-3Y-0.5Zr alloys in as-cast,T4,and T6 conditions are 36μA·cm^(-2),10μA·cm^(-2),and 33μA·cm^(-2),respectively.The proposed equivalent circuit[Rs(CPE_(1)R_(t)R_(f)CPE_(2))]by Zview software matches well with the tested electrochemical impedance spectra(EIS)data.展开更多
In this work,a new(Y,Gd)H_(2) precipitate was identified and systematically investigated in the as-cast Mg-6Gd-3Y-0.5Zr alloy by XRD,SEM with EDS,TEM with EDS techniques and thermodynamics analysis.Results show that t...In this work,a new(Y,Gd)H_(2) precipitate was identified and systematically investigated in the as-cast Mg-6Gd-3Y-0.5Zr alloy by XRD,SEM with EDS,TEM with EDS techniques and thermodynamics analysis.Results show that the as-cast alloy contains α-Mg,Mg_(24)(Gd,Y)_(5),and(Y,Gd)H_(2) phase.The(Y,Gd)H_(2) phase usually forms near the eutectic phase Mg_(24)(Gd,Y)_(5) or in the α-Mg grains,displaying a rectangle-shape.The Mg_(24)(Gd,Y)_(5) and(Y,Gd)H_(2) phases crystalize in bcc and fcc structure,respectively,and the(Y,Gd)H_(2) phase has a semi-coherent relationship with α-Mg matrix.The thermodynamics calculation results reveal that the hydrogen dissolved in the melt leads to the formation of hydrides.It is also found that the(Y,Gd)H_(2) hydride can form directly from the liquid phase during solidification.Additionally,it can precipitate by the decomposition of Mg_(24)(Gd,Y)_(5) phase due to absorbing hydrogen from the remaining melt.展开更多
Aiming at the problems of poor plastic forming ability,narrow forging temperature range,and strain rate sensitivity of rare earth magnesium alloys,a study on the microstructure and mechanical properties of Mg-8Gd-3Y-0...Aiming at the problems of poor plastic forming ability,narrow forging temperature range,and strain rate sensitivity of rare earth magnesium alloys,a study on the microstructure and mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with different isothermal forging processes is carried out.The microstructure and properties of the alloy in the as-cast,isothermal forged,and post-aging states after forging are studied with optical microscope(OM),scanning electron microscope(SEM),and tensile testing.The results show that significant dynamic recrystallization occurs during the isothermal forging process,a fine equiaxed grain structure is formed,and the mechanical properties of the alloy are greatly improved.When the isothermal forging temperature is 460℃ and the strain rate is 0.02 s^(-1),the alloy structure performance is the best,the room temperature tensile yield strength(TYS)is 218 MPa,the ultimate tensile strength(UTS)is 299 MPa,and the fracture elongation(FE)is 19.2%.When the alloy is post-forging artificial aged,theα-Mg matrix is dispersed,the Mg_5(Gd,Y)phase is precipitated,the UTS of the alloy is increased to 392 MPa,and the FE is reduced to 12.0%.展开更多
基金supported by the Key Project of Equipment Pre-research Field Fund under Grant No.61409230407.
文摘The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5) eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5) phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2) phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5) phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with the α-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2) phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5) phase,exhibits better corrosion resistance performance.
基金National Natural Science Foundation of China(Nos.U2037601,51821001)Key Basic Research Project of the National Basic Strengthening Plan,China(No.2022-xxxx-ZD-093-xx)。
基金Project(51275295)supported by the National Natural Science Foundation of ChinaProject(USCAST2012-15)supported by the Funded Projects of SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProject(20120073120011)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were investigated. The optimum T6 heat treatments for sand-cast Mg-10Gd-3Y-0.5Zr alloy are (525 ℃, 12 h+225 ℃, 14 h) and (525 ℃, 12 h+250 ℃, 12 h) according to age hardening curve and mechanical properties, respectively. The ultimate tensile strength, yield strength and elongation of the Mg-10Gd-3Y-0.5Zr alloy treated by the two optimum T6 processes are 339.9 MPa, 251.6 MPa, 1.5%and 359.6 MPa, 247.3 MPa, 2.7%, respectively. The tensile fracture mode of peak-aged Mg-10Gd-3Y-0.5Zr alloy is transgranular quasi-cleavage fracture.
基金Project (51275295) supported by the National Natural Science Foundation of ChinaProject (USCAST2012-15) supported by the Funded Projects of SAST-SJTU Aerospace Advanced Technology Joint Research Centre, ChinaProject (20120073120011) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Influence of multi-cycle cryogenic treatment and tensile temperature on microstructure, mechanical properties and fracture mechanism of as-extruded Mg-10Gd-3Y-0.5Zr magnesium alloy was investigated. The results show that there have no significant changes in tensile properties of the tested alloy after 10 d in liquid nitrogen immersion or 10 cycles of high-low temperature treatment at all test temperatures. The room temperature ultimate tensile strength increases from 398 MPa to 417 MPa after 20 cycles of high-low temperature treatments. Compared with the room temperature, the tested alloys exhibit higher tensile properties at low temperatures. At -196 °C, the yield strength and ultimate tensile strength of the as-extruded-T5 Mg-10Gd-3Y-0.5Zr alloy are 349 MPa and 506 MPa, respectively, increasing by about 18% and 27%, respectively. The transgranular cleavage fracture mechanism is observed at room temperature, while at low temperatures both ductile fracture and cleavage fracture behaviors coexist.
基金Project (2011BAE22B01) supported by the National Key Technology R&D Program of China
文摘The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates the mean grain size of 15 μm for the extruded and 100 μm for the as-cast Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys. The corrosion morphology of as-cast sample shows pitting corrosion and little filiform corrosion, but that of the extruded sample shows pitting corrosion at the initial stage. The corrosion rate of extruded sample is higher than that of as-cast Mg-5Y-7Gd-1Nd-0.5Zr alloy according to the immersion test. The second phases containing RE acting as cathodes improve the corrosion properties. The corrosion potentials of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr alloys are -1.658 V and -1.591 V, respectively. The origins of the distinctive corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr Mg alloys were discussed.
基金This work was financially supported by the National Nat-ural Science Foundation of China(No.51275295)Funded Projects of SAST-SJTU Aerospace Advanced Technology Joint Research Centre(No.USCAST2012-15)Research Fund for the Doctoral Program of Higher Education of China(No.20120073120011).
文摘In this study,the microstructure evolution of semi-solid Mg-10Gd-3Y-0.5Zr alloy during isothermal heat treatment has been investigated.The results show that primary particles coarsen continuously during the holding.Coarsening rate decreases with the increase of isothermal temperature.When isothermal temperature increases from 600℃ to 620℃,the dominant mechanism for coarsening changes from particle coalescence to Ostwald ripening.Equiaxed as-cast microstructure is beneficial to the semi-solid microstructure after isothermal heat treatment,which brings about the refinement and spheroidization of primary particles,and shortening of holding time.Significant modification of second phases can also be achieved after isothermal heat treatment,due to its unique solidification process.The optimum processing parameters for Mg-10Gd-3Y-0.5Zr alloy in isothermal heat treatment are isothermal temperature of 610℃-620℃ and holding time of 20-40 min.
基金financially supported by the Natural Science Foundation of Shanxi Province (No. 201901D111176)the Joint Funds of the National Natural Science Foundation of china (Grant No. U20A20230)+3 种基金the Bureau of science, technology and industry for National Defense of China (No. WDZC2019JJ006)the Key R&D program of Shanxi Province (International Cooperation) (No. 201903D421036)the National Natural Science Foundation of China (Grant No. 52075501)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2018002)。
文摘Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent.
基金sponsored by the National Natural Science Foundation of China(No.51275295)Research Fund for the Doctoral Program of Higher Education of China(Nos.20120073120011 and 20130073110052)
文摘The corrosion behaviors of low-pressure sand cast Mg-10Gd-3Y-0.5Zr(wt.%)alloys in as-cast,solution treated(T4)and aged(T6)conditions were studied by means of immersion test and electrochemical measurements in 5wt.%NaCl solution saturated with Mg(OH)_(2).It was observed that the corrosion rate in the T4 condition was lower than that of the as-cast and T6 conditions by both sand casting and permanent mold casting with the same order of as-cast>T6>T4;while the corrosion resistance of the permanent mold casting is superior to the sand casting.The morphologies of the corrosion products are similar porous structures consisting of tiny erect flakes perpendicular to the corroded surface of the alloy,irrespective of the heat treatment conditions.Especially,the corrosion film in T4 condition is more compact than that in the other two conditions.In addition,the severer corrosion happening to the as-cast condition is correlated with the galvanic corrosion between the matrix and the eutectic compounds;while improved corrosion resistance for the T4 and T6 conditions is ascribed to the dissolution of the secondary eutectic compounds.The measured corrosion current densities of Mg-10Gd-3Y-0.5Zr alloys in as-cast,T4,and T6 conditions are 36μA·cm^(-2),10μA·cm^(-2),and 33μA·cm^(-2),respectively.The proposed equivalent circuit[Rs(CPE_(1)R_(t)R_(f)CPE_(2))]by Zview software matches well with the tested electrochemical impedance spectra(EIS)data.
基金financially supported by the Key Project of Equipment Pre-research Field Fund under Grant No.61409230407the National Natural Science Foundation of China(NSFC)under Grant No.51601054the Central Government Guides Local Science and Technology Development Fund Projects under Grant No.206Z1005G。
文摘In this work,a new(Y,Gd)H_(2) precipitate was identified and systematically investigated in the as-cast Mg-6Gd-3Y-0.5Zr alloy by XRD,SEM with EDS,TEM with EDS techniques and thermodynamics analysis.Results show that the as-cast alloy contains α-Mg,Mg_(24)(Gd,Y)_(5),and(Y,Gd)H_(2) phase.The(Y,Gd)H_(2) phase usually forms near the eutectic phase Mg_(24)(Gd,Y)_(5) or in the α-Mg grains,displaying a rectangle-shape.The Mg_(24)(Gd,Y)_(5) and(Y,Gd)H_(2) phases crystalize in bcc and fcc structure,respectively,and the(Y,Gd)H_(2) phase has a semi-coherent relationship with α-Mg matrix.The thermodynamics calculation results reveal that the hydrogen dissolved in the melt leads to the formation of hydrides.It is also found that the(Y,Gd)H_(2) hydride can form directly from the liquid phase during solidification.Additionally,it can precipitate by the decomposition of Mg_(24)(Gd,Y)_(5) phase due to absorbing hydrogen from the remaining melt.
文摘Aiming at the problems of poor plastic forming ability,narrow forging temperature range,and strain rate sensitivity of rare earth magnesium alloys,a study on the microstructure and mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with different isothermal forging processes is carried out.The microstructure and properties of the alloy in the as-cast,isothermal forged,and post-aging states after forging are studied with optical microscope(OM),scanning electron microscope(SEM),and tensile testing.The results show that significant dynamic recrystallization occurs during the isothermal forging process,a fine equiaxed grain structure is formed,and the mechanical properties of the alloy are greatly improved.When the isothermal forging temperature is 460℃ and the strain rate is 0.02 s^(-1),the alloy structure performance is the best,the room temperature tensile yield strength(TYS)is 218 MPa,the ultimate tensile strength(UTS)is 299 MPa,and the fracture elongation(FE)is 19.2%.When the alloy is post-forging artificial aged,theα-Mg matrix is dispersed,the Mg_5(Gd,Y)phase is precipitated,the UTS of the alloy is increased to 392 MPa,and the FE is reduced to 12.0%.