To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes a...To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes and directions were systematically performed,and surface morphologies of the scratched grooves under different conditions were analyzed.The experimental results indicated that anisotropy considerably affected the damage evolution in the machining process of MgF_(2) single crystals.A stress field model induced by the scratch was developed by considering the anisotropy,which indicated that during the loading process,median cracks induced by the tensile stress initiated and propagated at the front of the indenter.Lateral cracks induced by tensile stress initiated and propagated on the subsurface during the unloading process.In addition,surface radial cracks induced by the tensile stress were easily generated during the unloading process.The stress change led to the deflection of the propagation direction of lateral cracks.Therefore,the lateral cracks propagated to the workpiece surface,resulting in brittle removal in the form of chunk chips.The plastic deformation parameter indicated that the more the slip systems were activated,the more easily the plastic deformation occurred.The cleavage fracture parameter indicated that the cracks propagated along the activated cleavage planes,and the brittle chunk removal was owing to the subsurface cleavage cracks propagating to the crystal surface.Under the same processing parameters,the scratch of the(001)crystal plane along the[100]crystal-orientation was found to be the most conducive to achieving plastic machining of MgF_(2) single crystals.The theoretical results agreed well with the experimental results,which will not only enhance the understanding of the anisotropy dependence of the damage evolution and removal process during the machining of MgF_(2) crystals,but also provide a theoretical foundation for achieving the high-efficiency and low-damage processing of anisotropic single crystals.展开更多
The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)signific...The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)significantly enriches photogenerated electrons at Ni active sites and enhances the performance for CO_(2) reduction into syngas.During photocatalytic CO_(2) reduction,Ni single‐atom‐anchored P‐modulated carbon nitride showed an impressive syngas yield rate of 85μmol gcat^(−1)h^(−1) and continuously adjustable CO/H_(2) ratios ranging from 5:1 to 1:2,which exceeded those of most of the reported carbon nitride‐based single‐atom catalysts.Mechanistic studies reveal that P doping improves the conductivity of catalysts,which promotes photogenerated electron transfer to the Ni active sites rather than dissipate randomly at low‐activity nonmetallic sites,facilitating the CO_(2)‐to‐syngas photoreduction process.展开更多
We report the magnetotransport and thermal properties of RuAs_(2) single crystal.RuAs_(2) exhibits semiconductor behavior and localization effect.The crossover from normal state to diffusive transport in the weak loca...We report the magnetotransport and thermal properties of RuAs_(2) single crystal.RuAs_(2) exhibits semiconductor behavior and localization effect.The crossover from normal state to diffusive transport in the weak localization(WL)state and then to variable range hopping(VRH)transport in the strong localization state has been observed.The transitions can be reflected in the measurement of resistivity and Seebeck coefficient.Negative magnetoresistance(NMR)emerges with the appearance of localization effect and is gradually suppressed in high magnetic field.The temperature dependent phase coherence length extracted from the fittings of NMR also indicates the transition from WL to VRH.The measurement of Hall effect reveals an anomaly of temperature dependent carrier concentration caused by localization effect.Our findings show that RuAs_(2) is a suitable platform to study the localized state.展开更多
To attain a circular carbon economy and resolve CO_(2) electroreduction technology obstacles,single‐atom catalysts(SACs)have emerged as a logical option for electrocatalysis because of their extraordinary catalytic a...To attain a circular carbon economy and resolve CO_(2) electroreduction technology obstacles,single‐atom catalysts(SACs)have emerged as a logical option for electrocatalysis because of their extraordinary catalytic activity.Among SACs,metal–organic frameworks(MOFs)have been recognized as promising support materials because of their exceptional ability to prevent metal aggregation.This study shows that atomically dispersed Ni single atoms on a precisely engineered MOF nanosheet display a high Faradaic efficiency of approximately 100% for CO formation in H‐cell and three‐compartment microfluidic flow‐cell reactors and an excellent turnover frequency of 23,699 h^(−1),validating their intrinsic catalytic potential.These results suggest that crystallographic variations affect the abundant vacancy sites on the MOF nanosheets,which are linked to the evaporation of Zn‐containing organic linkers during pyrolysis.Furthermore,using X‐ray absorption spectroscopy and density functional theory calculations,a comprehensive investigation of the unsaturated atomic coordination environments and the underlying mechanism involving CO^(*) preadsorbed sites as initial states was possible and provided valuable insights.展开更多
Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of ma...Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of material and it is challenging to characterize the local structure,a reliable structure–property relationship is difficult to establish.Conjugated macrocyclic complexes adsorbed on carbon support are well‐defined models to mimic the singleatom catalysts.Metal–N_(4) site with four electroneutral pyridine‐type ligands embedded in a graphene layer is the most commonly proposed structure of the active site of single‐atom catalysts,but its molecular counterpart has not been reported.In this work,we synthesized the conjugated macrocyclic complexes with a metal center(Co,Fe,or Ni)coordinated with four electroneutral pyridinic ligands as model catalysts for CO_(2) electroreduction.For comparison,the complexes with anionic quadri‐pyridine macrocyclic ligand were also prepared.The Co complex with the electroneutral ligand expressed a turnover frequency of CO formation more than an order of magnitude higher than that of the Co complex with the anionic ligand.Constrained ab initio molecular dynamics simulations based on the well‐defined structures of the model catalysts indicate that the Co complex with the electroneutral ligand possesses a stronger ability to mediate electron transfer from carbon to CO_(2).展开更多
The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a...The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.展开更多
ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,b...ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.展开更多
Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the r...Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.展开更多
基金supported by the National Natural Science Foundation of China (52005134&51975154)China Postdoctoral Science Foundation (2022T150163, 2020M670901)+4 种基金Self-Planned Task (No. SKLRS202214B) of State Key Laboratory of Robotics and System (HIT)Heilongjiang Postdoctoral Fund (LBH-Z20016)Shenzhen Science and Technology Program (GJHZ20210705142804012)Fundamental Research Funds for the Central Universities(FRFCU5710051122)Open Fund of ZJUT Xinchang Research Institute
文摘To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes and directions were systematically performed,and surface morphologies of the scratched grooves under different conditions were analyzed.The experimental results indicated that anisotropy considerably affected the damage evolution in the machining process of MgF_(2) single crystals.A stress field model induced by the scratch was developed by considering the anisotropy,which indicated that during the loading process,median cracks induced by the tensile stress initiated and propagated at the front of the indenter.Lateral cracks induced by tensile stress initiated and propagated on the subsurface during the unloading process.In addition,surface radial cracks induced by the tensile stress were easily generated during the unloading process.The stress change led to the deflection of the propagation direction of lateral cracks.Therefore,the lateral cracks propagated to the workpiece surface,resulting in brittle removal in the form of chunk chips.The plastic deformation parameter indicated that the more the slip systems were activated,the more easily the plastic deformation occurred.The cleavage fracture parameter indicated that the cracks propagated along the activated cleavage planes,and the brittle chunk removal was owing to the subsurface cleavage cracks propagating to the crystal surface.Under the same processing parameters,the scratch of the(001)crystal plane along the[100]crystal-orientation was found to be the most conducive to achieving plastic machining of MgF_(2) single crystals.The theoretical results agreed well with the experimental results,which will not only enhance the understanding of the anisotropy dependence of the damage evolution and removal process during the machining of MgF_(2) crystals,but also provide a theoretical foundation for achieving the high-efficiency and low-damage processing of anisotropic single crystals.
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:WK2060000016National Natural Science Foundation of China,Grant/Award Numbers:12222508,U1932213+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences,Grant/Award Number:2020454USTC Research Funds of the Double First‐Class Initiative,Grant/Award Number:YD2310002005National Key R&D Program of China,Grant/Award Number:2023YFA1506304。
文摘The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)significantly enriches photogenerated electrons at Ni active sites and enhances the performance for CO_(2) reduction into syngas.During photocatalytic CO_(2) reduction,Ni single‐atom‐anchored P‐modulated carbon nitride showed an impressive syngas yield rate of 85μmol gcat^(−1)h^(−1) and continuously adjustable CO/H_(2) ratios ranging from 5:1 to 1:2,which exceeded those of most of the reported carbon nitride‐based single‐atom catalysts.Mechanistic studies reveal that P doping improves the conductivity of catalysts,which promotes photogenerated electron transfer to the Ni active sites rather than dissipate randomly at low‐activity nonmetallic sites,facilitating the CO_(2)‐to‐syngas photoreduction process.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1406500 and 2019YFA0308602)the National Natural Science Foundation of China (Grant Nos.12104011,12274388,12074425,52102333,12104010,12204004,and 11874422)the Natural Science Foundation of Anhui Province (Grant Nos.2108085QA22 and 2108085MA16)。
文摘We report the magnetotransport and thermal properties of RuAs_(2) single crystal.RuAs_(2) exhibits semiconductor behavior and localization effect.The crossover from normal state to diffusive transport in the weak localization(WL)state and then to variable range hopping(VRH)transport in the strong localization state has been observed.The transitions can be reflected in the measurement of resistivity and Seebeck coefficient.Negative magnetoresistance(NMR)emerges with the appearance of localization effect and is gradually suppressed in high magnetic field.The temperature dependent phase coherence length extracted from the fittings of NMR also indicates the transition from WL to VRH.The measurement of Hall effect reveals an anomaly of temperature dependent carrier concentration caused by localization effect.Our findings show that RuAs_(2) is a suitable platform to study the localized state.
基金National Research Foundation of Korea(NRF),Grant/Award Numbers:2021R1A4A3027878,RS‐2023‐00209139,2015M3D3A1A01064929Korea Institute of Energy Technology&Energy(MOTIE)of the Republic of Korea,Grant/Award Number:20212010100040。
文摘To attain a circular carbon economy and resolve CO_(2) electroreduction technology obstacles,single‐atom catalysts(SACs)have emerged as a logical option for electrocatalysis because of their extraordinary catalytic activity.Among SACs,metal–organic frameworks(MOFs)have been recognized as promising support materials because of their exceptional ability to prevent metal aggregation.This study shows that atomically dispersed Ni single atoms on a precisely engineered MOF nanosheet display a high Faradaic efficiency of approximately 100% for CO formation in H‐cell and three‐compartment microfluidic flow‐cell reactors and an excellent turnover frequency of 23,699 h^(−1),validating their intrinsic catalytic potential.These results suggest that crystallographic variations affect the abundant vacancy sites on the MOF nanosheets,which are linked to the evaporation of Zn‐containing organic linkers during pyrolysis.Furthermore,using X‐ray absorption spectroscopy and density functional theory calculations,a comprehensive investigation of the unsaturated atomic coordination environments and the underlying mechanism involving CO^(*) preadsorbed sites as initial states was possible and provided valuable insights.
基金Guangdong Grants,Grant/Award Number:2021ZT09C064National Natural Science Foundation of China,Grant/Award Numbers:22272073,22373045,22373045+2 种基金Shenzhen Science and Technology Program,Grant/Award Numbers:JCYJ20210324104414039,JCYJ20220818100410023,KCXST20221021111207017Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2021A1515110360,2022A1515011976China Postdoctoral Science Foundation,Grant/Award Number:2022M721469。
文摘Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of material and it is challenging to characterize the local structure,a reliable structure–property relationship is difficult to establish.Conjugated macrocyclic complexes adsorbed on carbon support are well‐defined models to mimic the singleatom catalysts.Metal–N_(4) site with four electroneutral pyridine‐type ligands embedded in a graphene layer is the most commonly proposed structure of the active site of single‐atom catalysts,but its molecular counterpart has not been reported.In this work,we synthesized the conjugated macrocyclic complexes with a metal center(Co,Fe,or Ni)coordinated with four electroneutral pyridinic ligands as model catalysts for CO_(2) electroreduction.For comparison,the complexes with anionic quadri‐pyridine macrocyclic ligand were also prepared.The Co complex with the electroneutral ligand expressed a turnover frequency of CO formation more than an order of magnitude higher than that of the Co complex with the anionic ligand.Constrained ab initio molecular dynamics simulations based on the well‐defined structures of the model catalysts indicate that the Co complex with the electroneutral ligand possesses a stronger ability to mediate electron transfer from carbon to CO_(2).
文摘The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.
基金supported by the National Natural Science Foundation of China(Grant No.51871078 and 52071119)Interdisciplinary Research Foundation of HIT(Grant No.IR2021208)+1 种基金State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS38)Heilongjiang Science Foundation(No.LH2020B006).
文摘ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.
基金the financial support for this work from the National Natural Science Foundation of China(Nos.U1764254,51871166)the Tianjin Natural Science Foundation,China(No.20JCYBJC00620)。
基金the financially support of the National Natural Science Foundation of China(12164051)the Joint Foundation of Provincial Science and Technology Department-Double First-class Construction of Yunnan University(2019FY003016)+4 种基金the Young Top Talent Project of Yunnan Province(YNWR-QNBJ-2018-229)the financially support by Yunnan Major Scientific and Technological Projects(202202AG050016)Advanced Analysis and Measurement Center of Yunnan University for the sample characterization service and the Postgraduate Research and Innovation Foundation of Yunnan University(2021Y036)the financially support of the National Natural Science Foundation of China(62064013)the Application Basic Research Project of Yunnan Province[2019FB130]。
文摘Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.
基金Project(61871389)supported by the National Natural Science Foundation of ChinaProject(22-ZZCX-007)supported by the Research Major Project of the National University of Defense Technology,China+3 种基金Project(1908085MF222)supported by the Anhui Province Natural Science Foundation,ChinaProject(AHL2021ZR04)supported by Foundation of the Anhui Laboratory of Advanced Laser Technology,ChinaProject(SKL2022ZR10)supported by Foundation of the State Key Laboratory of Pulsed Power Laser Technology,ChinaProject(JCVKY2023230C010)supported by the National Defense Basic Scientific Research Program of China。