This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mecha...This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.展开更多
In this article, we used the self-excitation and self-inductance characteristics of polyvinylidene fluoride(PVDF) piezoelectric materials, combined with the powerful signal processing and calculation analysis capabili...In this article, we used the self-excitation and self-inductance characteristics of polyvinylidene fluoride(PVDF) piezoelectric materials, combined with the powerful signal processing and calculation analysis capabilities of integrated circuits, for the first time to explore a set of microcantilever sensor "readout system" without additional driver(self-driving) and can realize self-sensing external signal(self-sensing).It was successfully applied to the unlabeled detection of avian influenza virus(AIV) H9N_(2). The specific force of the antigen-antibody complexes on the surface of the microcantilever leads to the change of the stress of the cantilever, which drives the constructed detection device, and does not require an additional excitation source to drive it, that is, the self-driving part. At the same time, due to the movement of piezoelectric charges in the film caused by the positive piezoelectric effect of the PVDF film, self-inductive charges are generated on the surface of the sensor dielectric. The charge signal is converted into a voltage signal, and the sensing part is completed, that is, self-sensing. The immunosensor has a linear range of100-1000 ng/m L with a detection limit of 2.9 ng/m L. The method will also open up a new avenue for the detection of other analytes based on antigen-antibody responses.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12372086,12072374,and 12102485)。
文摘This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.
基金the financial support from National Natural Science Foundation of China (No. 22102141)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)+2 种基金Nature Science Foundation of Jiangsu Province No.BK20190905Project for Science and Technology of Yangzhou(No. YZ2020067)the open funds of the Ministry of Education Key Lab for Avian Preventive Medicine (No. YF202020)。
文摘In this article, we used the self-excitation and self-inductance characteristics of polyvinylidene fluoride(PVDF) piezoelectric materials, combined with the powerful signal processing and calculation analysis capabilities of integrated circuits, for the first time to explore a set of microcantilever sensor "readout system" without additional driver(self-driving) and can realize self-sensing external signal(self-sensing).It was successfully applied to the unlabeled detection of avian influenza virus(AIV) H9N_(2). The specific force of the antigen-antibody complexes on the surface of the microcantilever leads to the change of the stress of the cantilever, which drives the constructed detection device, and does not require an additional excitation source to drive it, that is, the self-driving part. At the same time, due to the movement of piezoelectric charges in the film caused by the positive piezoelectric effect of the PVDF film, self-inductive charges are generated on the surface of the sensor dielectric. The charge signal is converted into a voltage signal, and the sensing part is completed, that is, self-sensing. The immunosensor has a linear range of100-1000 ng/m L with a detection limit of 2.9 ng/m L. The method will also open up a new avenue for the detection of other analytes based on antigen-antibody responses.