期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of the A6060 Al Alloy Mainly by Using the Micro-Hardness Vickers Test in Order to Optimize the Industrial Solutionizing Conditions of the As-Cast Billets
1
作者 G. K. Triantafyllidis I. Kiligaridis +4 位作者 D. I. Zagkliveris I. Orfanou S. Spyridopoulou E. Mitoudi-Vagourdi S. Semertzidou 《Materials Sciences and Applications》 2015年第1期86-94,共9页
Heat treatable Al alloys of the 6xxx series are produced by the industry following a path that consolidates melting of raw materials, casting the melt in billets, solutionizing the billets following a suitable thermal... Heat treatable Al alloys of the 6xxx series are produced by the industry following a path that consolidates melting of raw materials, casting the melt in billets, solutionizing the billets following a suitable thermal cycle, pre-heating and extruding the material to profiles and finally aging the profiles. Although this procedure is known for pure materials from the scientific point of view, the introduction of scrap to the raw materials for melting modifies to an extent the fabrication conditions that follow casting. This fact affects the production cost. In this article we propose a research way based mainly on micro-Vickers tests that lead to an optimization of the treatment conditions for solutionizing the billets. 展开更多
关键词 A6060 Al Alloy Strengthening Solutionizing Aging micro-vickers
下载PDF
Investigation on the process parameters of TIG-welded aluminum alloy through mechanical and microstructural characterization 被引量:5
2
作者 Muhammad Samiuddin Jing-long Li +3 位作者 Muhammad Taimoor Mohammad Nouman Siddiqui Sumair Uddin Siddiqui Jiang-tao Xiong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1234-1248,共15页
Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing ... Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing industries.Porosity formation and solidification cracking are the most common defects when TIG welding Al-5083 alloy,which is sensitive to the welding heat input.In the experiment,the heat input was varied from 0.89 kJ/mm to 5 kJ/mm designed by the combination of welding torch travel speed and welding current.Tensile,micro-Vicker hardness and Charpy impact tests were executed to witness the impetus response of heat input on the mechanical properties of the joints.Radiographic inspection was performed to assess the joint’s quality and welding defects.The results show that all the specimens displayed inferior mechanical properties as compared to the base alloy.It was established that porosity was progressively abridged by the increase of heat input.The results also clinched that the use of medium heat input(1-2 kJ/mm)offered the best mechanical properties by eradicating welding defects,in which only about 18.26% of strength was lost.The yield strength of all the welded specimens remained unaffected indica ted no influence of heat input.Partially melted zone(PMZ)width also affected by heat input,which became widened with the increase of heat input.The grain size of PMZ was found to be coarser than the respective grain size in the fusion zone.Charpy impact testing revealed that the absorbed energy by low heat input specimen(welded at high speed)was greater than that of high heat input(welded at low speed)because of low porosity and the formation of equiaxed grains which induce better impact toughness.Cryogenic(-196℃)impact testing was also performed and the results corroborate that impact properties under the cryogenic environment revealed no appreciable change after welding at designated heat input.Finally,Macro and micro fractured surfaces of tensile and impact specimens were analyzed using Stereo and Scanning Electron Microscopy(SEM),which have supported the experimental findings. 展开更多
关键词 Tungsten inert gas welding(TIG) Heat input Welding defects Tensile strength Charpy impact strength micro-vicker hardness SEM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部