The multigene families undergo birth-and-death evolution and thus contribute to biological innovations. The APETALA2-1ike genes belong to the euAP2 group of the AP2 gene family. These genes are characterized by severa...The multigene families undergo birth-and-death evolution and thus contribute to biological innovations. The APETALA2-1ike genes belong to the euAP2 group of the AP2 gene family. These genes are characterized by several distinct motifs and exist in ferns, gymnosperms, and angiosperms. The phylogenetic analysis indicated that these genes have undergone the birth-and-death evolution. The five APETALA2-1ike genes in rice (Oryza sativa L.) display redundant but distinct expression patterns as demonstrated by RT-PCR and in situ hybridization. The potential functions of these genes were discussed on the basis of phylogenetic and expression pattern.展开更多
Cleistogamy involves the shedding of pollen within an enclosed flower. In barley, this trait is determined by the presence of a recessive allele at the gene Clyl, a member of the AP2 gene family. Here we show that the...Cleistogamy involves the shedding of pollen within an enclosed flower. In barley, this trait is determined by the presence of a recessive allele at the gene Clyl, a member of the AP2 gene family. Here we show that the Clyl ortholog in einkorn (diploid) wheat (Triticum monococcum) TmAP2 shares a similar structure and identical pattern of transcription as Clyl. The transcript abundance of TmAP2 was high in the spike around the time of anthesis, but low in the leaf, plumule and radicle. The TmAP2 transcript was cleaved at its miR172 target site. Flower gaping at anthesis in einkorn wheat is induced by the expansion of the lodicules.展开更多
We investigated the microRNA172(miR172)-mediated regulatory network for the perception of changes in external and endogenous signals to identify a universally applicable floral regulation system in ornamental plants, ...We investigated the microRNA172(miR172)-mediated regulatory network for the perception of changes in external and endogenous signals to identify a universally applicable floral regulation system in ornamental plants, manipulation of which could be economically beneficial. Transgenic gloxinia plants, in which miR172 was either overexpressed or suppressed, were generated using Agrobacterium-mediated transformation. They were used to study the effect of altering the expression of this miRNA on time of flowering and to identify its mRNA target. Early or late flowering was observed in transgenic plants in which miR172 was overexpressed or suppressed, respectively. A full-length complementary DNA(cDNA) of gloxinia(Sinningia speciosa) APETALA2-like(SsAP2-like) was identified as a target of miR172. The altered expression levels of miR172 caused up-or down-regulation of SsAP2-like during flower development, which affected the time of flowering. Quantitative real-time reverse transcription PCR analysis of different gloxinia tissues revealed that the accumulation of SsAP2-like was negatively correlated with the expression of miR172 a, whereas the expression pattern of miR172 a was negatively correlated with that of miR156 a. Our results suggest that transgenic manipulation of miR172 could be used as a universal strategy for regulating time of flowering in ornamental plants.展开更多
基金the National Natural Science Foundation of China (No. 30600034 and 30621001)Chinese Acad-emy of Sciences (No. CXTD-S2005-2).
文摘The multigene families undergo birth-and-death evolution and thus contribute to biological innovations. The APETALA2-1ike genes belong to the euAP2 group of the AP2 gene family. These genes are characterized by several distinct motifs and exist in ferns, gymnosperms, and angiosperms. The phylogenetic analysis indicated that these genes have undergone the birth-and-death evolution. The five APETALA2-1ike genes in rice (Oryza sativa L.) display redundant but distinct expression patterns as demonstrated by RT-PCR and in situ hybridization. The potential functions of these genes were discussed on the basis of phylogenetic and expression pattern.
基金funded by the Japanese Ministry of Agriculture,Forestry and Fisheries (Genomics for Agricultural Innovation Grants No.TRG1004) to T.K.S.N.appreciates the award of a Japanese Government (Monbukagakusho:MEXT) scholarship
文摘Cleistogamy involves the shedding of pollen within an enclosed flower. In barley, this trait is determined by the presence of a recessive allele at the gene Clyl, a member of the AP2 gene family. Here we show that the Clyl ortholog in einkorn (diploid) wheat (Triticum monococcum) TmAP2 shares a similar structure and identical pattern of transcription as Clyl. The transcript abundance of TmAP2 was high in the spike around the time of anthesis, but low in the leaf, plumule and radicle. The TmAP2 transcript was cleaved at its miR172 target site. Flower gaping at anthesis in einkorn wheat is induced by the expansion of the lodicules.
基金Project supported by the National Natural Science Foundation of China(Nos.31171615 and 31401913)
文摘We investigated the microRNA172(miR172)-mediated regulatory network for the perception of changes in external and endogenous signals to identify a universally applicable floral regulation system in ornamental plants, manipulation of which could be economically beneficial. Transgenic gloxinia plants, in which miR172 was either overexpressed or suppressed, were generated using Agrobacterium-mediated transformation. They were used to study the effect of altering the expression of this miRNA on time of flowering and to identify its mRNA target. Early or late flowering was observed in transgenic plants in which miR172 was overexpressed or suppressed, respectively. A full-length complementary DNA(cDNA) of gloxinia(Sinningia speciosa) APETALA2-like(SsAP2-like) was identified as a target of miR172. The altered expression levels of miR172 caused up-or down-regulation of SsAP2-like during flower development, which affected the time of flowering. Quantitative real-time reverse transcription PCR analysis of different gloxinia tissues revealed that the accumulation of SsAP2-like was negatively correlated with the expression of miR172 a, whereas the expression pattern of miR172 a was negatively correlated with that of miR156 a. Our results suggest that transgenic manipulation of miR172 could be used as a universal strategy for regulating time of flowering in ornamental plants.