An optical fiber microdisplacement sensor based on symmetric Mach-Zehnder interferometer (MZI) with a seven-core fiber and two single-mode fiber balls is proposed. The rationality and manufacturing process of the MZI ...An optical fiber microdisplacement sensor based on symmetric Mach-Zehnder interferometer (MZI) with a seven-core fiber and two single-mode fiber balls is proposed. The rationality and manufacturing process of the MZI sensing structure are analyzed. The fabrication mechanism of the Mach-Zehnder sensor by CO2 laser is described in detail. Experimental results show that temperature sensitivities of the two dips are 98.65 pm/℃ and 89.72pm/℃, respectively. The microdisplacement sensitivities are 2017.71 pm/mm and 2457.92 pm/mm, respectively. The simultaneous measurement of temperature and microdisplacement is demonstrated based on the sensitive matrix. The proposed Mach-Zehnder interference sensor exhibits the advantages of compact structure, simple manufacturing process, and high reliability.展开更多
A novel fiber optics micredisplacement sensor employing a GRIN rod lens is described. The paper presents the operational principle of this device using a geometric optic approach. According to the theoretical analysis...A novel fiber optics micredisplacement sensor employing a GRIN rod lens is described. The paper presents the operational principle of this device using a geometric optic approach. According to the theoretical analysis, we know how to select the parameters of the GRIN rod lens,fibers and other elements in design. DUe to the novel structure, the displacement sensitivity of this sensor is better than the conventional lateral microdisplacment sensor, by a factor of 2.展开更多
Three-dimensional Information Decoupling System Based on PSD were designed based on LabVIEW, in order to achieve precision, timeliness, reliability require-ments of the PSD used in the ATP system of Satellite Earth qu...Three-dimensional Information Decoupling System Based on PSD were designed based on LabVIEW, in order to achieve precision, timeliness, reliability require-ments of the PSD used in the ATP system of Satellite Earth quantum communication. Firstly, the laser light source was driven by a stepper motor to scan on the PSD photosensitive surface, and the voltage value was collected and calculated to get the spot position. Analyzing the cause of nonlinear, a mathematical model was built between the actual value and the measured value by using binary quadratic polynomial method, PSD nonlinear correction function would be got. Then, the object micro displacement and angle offset were measured by combining optical triangulation method, and the error of the measurement results was corrected. Experimental results showed that, after the correction, the measuring deviation could be significantly reduced, the PSD performance calibration requirements was achieved, the efficiency of the system was developed greatly by using LabVIEW.展开更多
文摘An optical fiber microdisplacement sensor based on symmetric Mach-Zehnder interferometer (MZI) with a seven-core fiber and two single-mode fiber balls is proposed. The rationality and manufacturing process of the MZI sensing structure are analyzed. The fabrication mechanism of the Mach-Zehnder sensor by CO2 laser is described in detail. Experimental results show that temperature sensitivities of the two dips are 98.65 pm/℃ and 89.72pm/℃, respectively. The microdisplacement sensitivities are 2017.71 pm/mm and 2457.92 pm/mm, respectively. The simultaneous measurement of temperature and microdisplacement is demonstrated based on the sensitive matrix. The proposed Mach-Zehnder interference sensor exhibits the advantages of compact structure, simple manufacturing process, and high reliability.
文摘A novel fiber optics micredisplacement sensor employing a GRIN rod lens is described. The paper presents the operational principle of this device using a geometric optic approach. According to the theoretical analysis, we know how to select the parameters of the GRIN rod lens,fibers and other elements in design. DUe to the novel structure, the displacement sensitivity of this sensor is better than the conventional lateral microdisplacment sensor, by a factor of 2.
文摘Three-dimensional Information Decoupling System Based on PSD were designed based on LabVIEW, in order to achieve precision, timeliness, reliability require-ments of the PSD used in the ATP system of Satellite Earth quantum communication. Firstly, the laser light source was driven by a stepper motor to scan on the PSD photosensitive surface, and the voltage value was collected and calculated to get the spot position. Analyzing the cause of nonlinear, a mathematical model was built between the actual value and the measured value by using binary quadratic polynomial method, PSD nonlinear correction function would be got. Then, the object micro displacement and angle offset were measured by combining optical triangulation method, and the error of the measurement results was corrected. Experimental results showed that, after the correction, the measuring deviation could be significantly reduced, the PSD performance calibration requirements was achieved, the efficiency of the system was developed greatly by using LabVIEW.